Assay of Plutonium Contaminated Waste by Gamma Spectrometry

Main Article Content

Ian Adsley
R. Bull
M. Davies
M. Green

Abstract

The extreme toxicity of plutonium necessitates the segregation of plutonium contaminated materials (PCM) with extremely small (sub-μg) levels of contamination. The driver to measure accurately these small quantities of plutonium within (relatively) large volumes of waste is (in part) financial. In particular the cost of disposal (per unit volume) rises steeply with increasing waste-category.

Within the UK, there has been a historical reluctance to use low energy gamma radiation to sentence PCM because of the potential for self attenuation by dense materials. This is unfortunate because the low-energy gamma radiation from PCM offers the only practicable technique for segregating PCM within the various Low Level Waste (LLW) (>0.4Bq/g) and sub-LLW categories. Whilst passive neutron counting techniques have proved successful for assay of waste well into the Intermediate Level Waste (ILW) (>100Bq/g) category, a cursory study reveals that these techniques are barely capable of detecting mg quantities of plutonium – let alone the sub-μg quantities present in LLW.

This paper considers the use of two types of gamma detector for assay of PCM: the thin sodium iodide FIDLER (Field Instrument for the Detection of Low Energy Radiation) and the HPGe (High Purity Germanium) detector. Systems utilising these two types of detector can provide complementary information.

FIDLER measurements are conducted by careful, local, systematic monitoring of surfaces.

By contrast a HPGe detector can be used to monitor entire walls, or even rooms, in one measurement. Thus, a HPGe detector placed in the centre of room (from which any radioactive hot-spots have previously been removed) could be used to demonstrate that the average activity remaining close to the surface of the walls/floor/ceiling is below a given limit.

The Monte Carlo Code MCNP 1 has been used to model both FIDLER probe and HPGe detector in the measurement geometries described above.

The MCNP simulations have been validated with experimental data.

Article Details

Section
Articles