2D Modeling of Moderator Flow and Temperature Distribution Around a Single Channel After PT/CT Contact

Main Article Content

Azin Behdadi
John C. Luxat

Abstract

A 2D computational fluid dynamics (CFD) model has been developed to calculate the moderator velocity field and temperature distribution around a single channel inside the moderator of a CANDU reactor after a postulated ballooning deformation of the pressure tube (PT) into contact with the calandria tube (CT). Following contact between the hot PT and the relatively cold CT, there is a spike in heat flux to the moderator surrounding the CT which may lead to sustained CT dryout. This can detrimentally affect channel integrity if the CT post-dryout temperature becomes sufficiently high to result in thermal creep strain deformation. The present research is focused on establishing the limits for dryout occurrence on the CTs for the situation in which pressure tube-calandria tube contact occurs. In order to consider different location of the channels inside the calandria, both upward and downward flow directions have been analyzed. The standard k ¡ " turbulence model associated with logarithmic wall function is applied to predict the effects of turbulence. The governing equations are solved by the finite element software package COMSOL. The buoyancy driven natural convection on the outer surface of a CT has been analyzed to predict the flow and temperature distribution around the single CT considering the local moderator subcooling, wall temperature and heat flux. The model also shows the effect of high CT temperature on the flow and subcooling around the CTs at higher/lower elevation depending on the flow direction in the domain. According to the flow pattern and temperature distribution, it is predicted that stable film boiling generates in the stagnation region on the cylinder.

Article Details

Section
Articles