Interfacial Area Transport in Two-Phase Flows in a Scaled 8X8 Rod Bundle Geometry at Elevated Pressures

Main Article Content

Xiaohong Yang
Joshua Schlegel
Sidharth Paranjape
Yang Liu
Shao-Wen Chen
Takashi Hibiki
Mamoru Ishii

Abstract

To improve the prediction accuracy and robustness of the next-generation thermal-hydraulics system analysis code, analytical and experimental research has been undertaken to develop the Interfacial Area Transport Equation (IATE) in a scaled 8x8 rod bundle geometry at elevated pressure conditions. The experiments performed include local measurements of void fraction, interfacial area concentration, and gas velocity at several axial locations using the innovative four-sensor conductivity probe. The test conditions cover a wide range of flow regimes from bubbly, cap-bubbly, cap-turbulent to churn-turbulent at 100 kPa and 300 kPa pressure conditions and the obtained data indicates some spacer effects on the flow parameters. The bubble groups are classified into two groups (Group-1: spherical and distorted bubbles, Group-2: cap and churn turbulent bubbles) based on the bubble transport characteristics. The area-averaged interfacial area transport data have been compared to the prediction by the one-dimensional two-group IATE with mechanistically modeled IAC source and sink terms. The one-group IATE is able to predict the bubbly-flow interfacial area within ±15% error under two pressure conditions. The two-group IATE performance is also very promising in the cap-bubbly flow and churn-turbulent flow regimes, with average error of about ±20%.

Article Details

Section
Articles