Physics of Coolability of Top Flooded Molten Corium
Main Article Content
Abstract
During a postulated severe accident in a nuclear reactor in case of ex-vessel scenario the molten corium can be relocated in the containment cavity forming a melt pool. In order to arrest further progression of severe accident, complete quenching of the molten corium pool is necessary. Most common way to deal with ex-vessel scenario is to flood the melt pool with large quantity of water. However, the mechanism of coolability is much more complex involving multi-component, multiphase heat, mass and momentum transfer.In this paper, a mechanistic model has been presented for the corium coolability under top flooding conditions. The model has been validated with the experimental data of COMECO test facility available in literature. Simulations have been carried out using the model to explore the physics behind the corium coolability with MCCI under top flooding condition. Variations in the thermo-physical properties as a result of MCCI have been considered and its effect on coolability has been studied.
Article Details
Section
Articles