Benchmarks for Interface-Tracking Codes in the Consortium for Advanced Simulation of LWRs (CASL)

Main Article Content

Despoina Chatzikyriakou
Jacopo Buongiorno
Djamel Lakehal

Abstract

A major innovation pursued by the Consortium for Advanced Simulation of LWRs (CASL) is the use of Interface Tracking Methods (ITM) to generate high-fidelity closure relations for two-phase flow and heat transfer phenomena (e.g. nucleate boiling, bubble break-up and coalescence, vapor condensation, etc.), to be used in coarser CFD, subchannel and system codes. ITMs do not assume an idealized geometry of the interface between the liquid and vapor phases, but rather calculate it from ‘first principles’. Also, used within the context of high-fidelity turbulence simulations, such as Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES), ITMs can resolve the velocity (including the fluctuating field) and temperature/scalar gradients near the liquid-vapor interface, so prediction of the exchange of momentum, mass and heat at the interface in principle requires no empirical correlations. The physical complexity of the two-phase flow and heat transfer phenomena encountered in LWRs naturally lends itself to an ITM analysis approach.Several codes featuring ITM capabilities are available within CASL. These are TransAT, STAR-CCM+, PHASTA, FTC3D and FELBM. They use a variety of ITMs ranging from Volume-Of-Fluid to Level-Set, from Front-Tracking to Lattice-Boltzmann. A series of benchmark simulations is being developed to test the key capabilities of these codes and their ITMs. In this paper, three such benchmark simulations, testing DNS, LES and interface tracking, respectively, are briefly described.

Article Details

Section
Articles