Thermally Stratified Sodium Channel Flow: Turbulence and Modelization
Main Article Content
Abstract
Numerical simulation of sodium stratification in open channel flow has been studied with Computational Fluid Dynamics (CFD) employing an Algebraic Heat Flux Model (AHFM) closure for the turbulent heat flux. The results are validated against experimental data and the AHFM is compared with the simplified Reynolds analogy employing a constant turbulent Pr number. Influence of buoyancy on turbulence created in the mixing layer has been evaluated and its influence on the momentum and energy transport in the vertical direction assessed. It has been found that the choice of turbulent heat flux model influences the achieved results for temperature and velocity field which might affect the flow developing and persistence of stratification in the channel. Moreover both experiment and validation show the possibility of creation of a strong stratification also for low Pr number fluids, warning the stratification problem as an existing phenomenon likely to occur in liquid metal nuclear power plants
Article Details
Section
Articles