Void Fraction Prediction of NUPEC PSBT Tests by CATHARE Code

Main Article Content

Alessandro DelNevo
Lorenzo Michelotti
Francesco S. D'Auria
F. Moretti
D. Rozzia

Abstract

The current generation of thermal-hydraulic system codes benefits of about sixty years of experiments and forty years of development and are considered mature tools to provide best estimate description of phenomena and detailed reactor system representations. However, there are continuous needs for checking the code capabilities in representing nuclear system, for drawing attention to their weak points, for identifying models which need to be refined for best-estimate calculations. Prediction of void fraction and Departure from Nucleate Boiling (DNB) in system thermal-hydraulics is currently based on empirical approaches. The database carried out by Nuclear Power Engineering Corporation (NUPEC), Japan addresses these issues. It is suitable for supporting the development of new computational tools based on more mechanistic approaches (i.e. three-field codes, two-phase CFD, etc.) as well as for validating current generation of thermal-hydraulic system codes. Selected experiments belonging to this database are used for the OECD/NRC PSBT benchmark. The paper reviews the activity carried out by CATHARE2 code on the basis of the sub-channel (four test sections) and presents rod bundle (different axial power profile and test sections) experiments available in the database in steady state and transient conditions. The results demonstrate the accuracy of the code in predicting the void fraction in different thermal-hydraulic conditions. The tests are performed varying the pressure, coolant temperature, mass flow and power. Sensitivity analyses are carried out addressing nodalization effect and the influence of the initial and boundary conditions of the tests.

Article Details

Section
Articles