Fluid-to-Fluid Scaling of Heat Transfer in Supercritical Fluids

Main Article Content

Xu Cheng
Xiaojing Liu
H Gu

Abstract

Model fluid technique has been widely applied in the thermal-hydraulic studies of nuclear engineering. In spite of growing activities of heat transfer at supercritical conditions using model fluids, there does still not exist any reliable fluid-to-fluid scaling methods, to transfer the test data in model fluids directly to the conditions of prototype fluid. This paper presents a fluid-to-fluid scaling method for heat transfer in circular tubes cooled with supercritical fluids. Based on conservation equations and boundary conditions, on set of dimensionless numbers and the requirements of a complete scaling are determined. Scaling of pressure and temperature ensures the similarity of thermo-physical properties of various fluids. A new dimensionless number, presenting the product of the so-called pseudo Boiling number, Reynolds number and Prandtl number, is applied to scale heat flux. The distortion approach is used to scale mass flux. The preliminary validation results show good feasibility and reasonable accuracy of the proposed scaling method.

Article Details

Section
Articles