Long-Term Regional and Sub-Regional Scale Groundwater Flow Within an Irregularly Fractured Canadian Shield Setting
Main Article Content
Abstract
As part of Ontario Power Generation's Deep Geologic Repository Technology Program (DGRTP), activities have been undertaken to further the understanding of groundwater flow system evolution and dynamics within a Canadian Shield setting. This paper describes a numerical case study in which the evolution and nature of groundwater flow, as relevant to the siting and safety of a hypothetical Deep Geologic Repository (DGR) for used nuclear fuel, is explored within representative regional (≈5734 km2) and sub-regional ( ≈83 km2 ) Shield watersheds. The modelling strategy adopted a GIS framework that included a digital elevation model and surface hydrologic features such as rivers, lakes and wetlands. Model boundary conditions were extracted through GIS automation such that the 3-dimensional characteristics of surface relief, surface water features, in addition to, pore fluid salinities and spatially variable permeability fields could be explicitly incorporated. Further flow system detail has been incorporated in sub-regional simulations with the inclusion of an irregular curve-planar Fracture Network Model traceable to site-specific geologic attributes. Interim modelling results reveal that deep-seated regional flow systems do evolve with groundwater divides within the shallow (<300 m) flow system defined by local scale topography, in particular, major rivers and their tributaries. Within the realizations considered groundwater flow at depths of ≈700 m or more was determined to be essentially stagnant and likely diffusion dominated. The role of fracture zone interconnectivity, depth dependent salinity and spatially variable permeability distributions on flow system response to past glacial events is examined. In demonstrating a case for groundwater flow system stability it is evident that predictive modelling approaches that cannot preserve the 3-dimensional complexity of the watershed-scale groundwater flow system may lead to conclusions that are implausible.
Article Details
Section
Articles