Long-Term Fate and Transport of Arsenic in an In-Pit Uranium Mine Tailings Facility
Main Article Content
Abstract
An important environmental issue facing the uranium mining industry in Saskatchewan is the quantification of the long-term migration of arsenic from its tailings facilities to the adjacent groundwater system. Decommissioning of these arsenic-rich tailings requires that the long-term arsenic source term for the tailings to the groundwater be defined. To meet this need, arsenic-rich uranium mine tailings from one in-pit tailings facility (tailings emplaced in a mined out open pit) were studied in detail. The tailings facility selected for study was the Rabbit Lake in-pit tailings management facility (RLITMF) in northern Saskatchewan, Canada. The tailings body in the RLITMF is 425 m long x 300 m wide x 100 m deep at its center and mill tailings were deposited in layers between 1985 (base) and 2004 (top). Associated with the low-level radioactive tailings is approximately 23,000 tonnes of arsenic. The in-pit design limits solute transport in these fine-grained tailings to diffusion. Because the layers of tailings have varying chemical characteristics (controlled by the ore being milled at the time), the total arsenic concentrations in the layers and their associated pore fluids range from 56 to 9,871 μg/g and 0.24 to 140 mg/l, respectively. As was the case for arsenic, the concentration of iron present in the layers was also variable (ranging from 8,967 to 30,247 μg/g). Synchrotron-based studies show that the arsenic in these tailings is strongly attenuated by adsorption to secondary 2-line ferrihydrite through inner sphere bidentate linkages. Single reservoir diffusion cell testing shows that the effective diffusion coefficient for arsenic in the tailings is 4.5 x 10-10 m2 s- 1. Based on results from our field- and laboratory-based studies, the redistribution (via diffusion) and attenuation (via adsorption) of arsenic in the RLITMF was modelled using a one-dimensional geochemical reactive transport model to provide a source term for arsenic migration from the tailings to the regional groundwater systems over the next millennia.
Article Details
Section
Articles