Innovative Approaches in the Manufacture of Zirconium Alloy Components for PHWRs
Main Article Content
Abstract
Selection of an appropriate route for the fabrication of Zirconium alloy fuel components has a direct bearing on the quality of finished product. Many sophisticated and intricate processes such as vacuum arc melting, extrusion, hot rolling and cold working processes - swaging, drawing and sheet rolling are employed. Many advances were made in eddy current and ultrasonic evaluation to meet the stringent quality control requirement and locate the micro flaws. Emphasis was laid on achieving high recoveries and manufacture the product at minimum cost.
Several creative and innovative processes were adopted particularly in the fabrication of end caps and spacers. The spacers were produced through the wire route and subsequently parting them into tiny spacers, which is entirely different from the conventional route of fabricating the sheets followed by blanking and coining. This has improved the material recovery and the lead time has been reduced substantially.
The end caps used for the closure of clad tubes have to meet the most stringent quality requirements to avoid micro-flaws. The manufacturing processes adopted have direct influence on the integrity of the finished product. Special defect standards were developed to identify and eliminate micro-flaws and thereby ensure consistent and repetitive quality product.
The paper brings out the above innovative approaches made in fabrication and quality control techniques in the manufacture of fuel components for PHWR fuel bundles.
Several creative and innovative processes were adopted particularly in the fabrication of end caps and spacers. The spacers were produced through the wire route and subsequently parting them into tiny spacers, which is entirely different from the conventional route of fabricating the sheets followed by blanking and coining. This has improved the material recovery and the lead time has been reduced substantially.
The end caps used for the closure of clad tubes have to meet the most stringent quality requirements to avoid micro-flaws. The manufacturing processes adopted have direct influence on the integrity of the finished product. Special defect standards were developed to identify and eliminate micro-flaws and thereby ensure consistent and repetitive quality product.
The paper brings out the above innovative approaches made in fabrication and quality control techniques in the manufacture of fuel components for PHWR fuel bundles.
Article Details
Section
Articles