Nuclear Energy in Industry: Application to Oil Production

Main Article Content

John K. Donnelly
Duane R. Pendergast

Abstract

Canada's commitment, via the Kyoto Protocol, to reduce carbon dioxide emissions poses some interesting challenges. New ways of undertaking activities to reduce emissions, while maintain our standard of living, is the desired end goal. Canada has vast reserves of oil in its tar sands deposits in northern Alberta. These are world scale deposits relative to known conventional oil reserves and will play an important role in the world's economy in years to come. Substantial energy is required to extract the oil and upgrade it into usable products. This energy is currently derived from fossil fuels and releases of carbon dioxide are a consequence. Additionally, hydrogen may be produced as a material component used to upgrade the oil. This hydrogen is currently produced by reforming of methane to remove the hydrogen component which also produces carbon dioxide which is generally discarded. This paper examines a relatively new extraction and processing concept (Steam Assisted Gravity Drainage) which can use steam and electricity from CANDU reactors and also produces oxygen, and heavy water. These products, in turn, can be used to increase energy production while reducing carbon dioxide emissions. The paper focuses on the magnitude of carbon dioxide emission avoidance which is anticipated based on data from current and projected projects. The paper reviews the current status of development of the oil sands industry and projects carbon dioxide emissions which would be expected if current extraction and upgrading techniques are continued. The scope of a project using a CANDU nuclear reactor as an alternate energy source to produce steam and hydrogen for upgrading is outlined. It is concluded that the carbon dioxide emissions that could be avoided by deployment of nuclear energy powered oil sands projects would be a substantial fraction of Canada's emission reduction goals for Kyoto.

Article Details

Section
Articles