Lead-Induced SCC of Alloy 600 in Plausible Steam Generator Crevice Environments

Main Article Content

M.D. Wright
A. Manolescu
M. Mirzai

Abstract

Laboratory stress corrosion cracking (SCC) test environments developed to simulate representative BNGS-A steam generator (SG) crevice chemistries have been used to determine the susceptibility of Alloy 600 to lead-induced SCC under plausible SG conditions. Test environments were based on plant SG hideout return data and analysis of removed tubes and deposits. Deviations from the normal near neutral crevice pH environment were considered to simulate possible faulted excursion crevice chemistry and to bound the postulated crevice pH range of 3-9 (at temperature). The effect of lead contamination up to 1000 ppm, but with an emphasis on the 100 to 500 ppm range, was determined. SCC susceptibility was investigated using constant extension rate tensile (CERT) tests and encapsulated C-ring tests. CERT tests were performed at 305OC on tubing representative of BNGS-A SG U-bends. The C-ring test method allowed a wider test matrix covering three temperatures (280, 304 and 315 degrees C), three strain levels (0.2%,2% and 4%) and tubing representative of U-bends plus tubing given a simulated stress relief to represent material at the tubesheet. The results of this test program confirmed that in the absence of lead contamination, cracking does not occur in these concentrated, 3.3 to 8.9 pH range, crevice environments. Also, it appears that the concentrated crevice environments suppress lead-induced cracking relative to that seen in all-volatile-treatment (AVT) water. For the (static) C-ring tests, lead-induced SCC was only produced in the near-neutral crevice environment and was more severe at 500 ppm than 100 ppm PbO. This trend was also observed in CERT tests but some cracking/grain boundary attack occurred in acidic (pH 3.3) and alkaline (pH 8.9) environments. The C-ring tests indicated that a certain amount of resistance to cracking was imparted by simulated stress relief of the tubing. This heat treatment, confirmed to have resulted in sensitization, promoted transgranular cracking in contrast to the intergranular cracking observed in as-received tubing. However, CERT tests on as-received tubing also promoted transgranular cracking, indicating that the cracking mode is dependent on deformation behaviour rather than on grain boundary Cr-depletion.

Article Details

Section
Articles