CANDU An Advanced Reactor With Supercritical Water Coolant: Conceptual Design Features
Main Article Content
Abstract
AECL is studying an advanced CANDU reactor concept, with supercritical steam as coolant. The coolant, being a high density gas, at a pressure above 22 MPa and temperatures above 370 degrees C, does not encounter the two-phase region with its associated fuel-dryout and flow-instability problems. Increased coolant temperature leads directly to increased plant thermodynamic efficiency, thereby reducing unit energy cost through reduced specific capital cost and reduced fuelling cost. The reduced coolant in-core density leads to sufficiently reduced void reactivity, so that light water becomes a coolant option. The use of supercritical water coolant also opens up the possibility of enhanced safety with a natural circulation primary flow, taking advantage of the gas expansion coefficient. To preserve neutron economy, especially at high coolant temperatures, a fuel channel that is currently being developed has a pressure tube that is thermally insulated from high temperature coolant and is in contact with the cold heavy-water moderator. Two stages of development of a supercritical-cooled CANDU reactor were identified. The first uses conventional or near-conventional zirconium-alloy fuel cladding with coolant core-mean temperatures near 400 degrees C, and the second uses advanced high-temperature fuel cladding at coolant core-mean temperatures near 500 degrees C. A first-stage cost reduction of 20% from the CANDU 6 design is estimated as a result of improved thermodynamic efficiency. A large change in coolant density across the core leads to a factor 3 or 4 reduction in heavy-water inventory and a corresponding reduction in coolant void reactivity. The latter leads to improved fuel burnup and reduced demand son the safety shutdown systems.
Article Details
Section
Articles