Enhancing the Seismic Capability of the On-power Refueling System of the CANDU Reactor
Main Article Content
Abstract
The CANDU reactor assembly includes several hundred horizontal fuel channels, each containing twelve fuel bundles, arranged in a square lattice, and supported by the reactor structures. CANDU operates on natural uranium or other low fissile content fuel, and is refueled on-power, with either four or eight fuel bundles in a channel being replaced during each refueling operation. The fueling machines clamp onto the opposite ends of the fuel channel to be refueled. The seismic capacity of this refueling system is evaluated in terms of its dynamic response during an earthquake. This paper describes the approach adopted to enhance the seismic capability of the fueling machine and calandria assembly for earthquakes of 0.3g ground acceleration covering a broad range of soil conditions ranging from soft to hard. A detailed, 3-D finite element seismic model of the fueling machine and calandria assembly system is developed to calculate the seismic responses of the structure. Some relatively simple hardware design changes have been considered to increase the seismic capacity of the CANDU 6 reactor. These changes in the fueling machine and calandria assembly of the CANDU 6 reactor are briefly described. They have been incorporated into the finite element seismic model of the system. Most of these design changes have already been considered and implemented in other CANDU reactor projects. The current CANDU 6 reactor design fully meets the requirements of seismic qualification for sites with potential for 0.2g ground acceleration where the seismic loads need to be combined with the other design loads for the support and pressure boundary components to demonstrate compliance with the applicable Code requirements. In the present study it is demonstrated that, with relatively simple hardware changes, the fueling machine and calandria assembly of the CANDU 6 reactor can withstand earthquakes of 0.3g ground acceleration. Based on the current study and some preliminary analysis of the CANDU 6 reactor and its fuel handling system, it is envisaged that there is still further potential to increase the seismic capacity beyond a level of 0.3g ground acceleration.
Article Details
Section
Articles