How Relevant to Radiation Protection is the Adaptive Response Mechanism?
Main Article Content
Abstract
There is evidence that the phenomenon of adaptive response (AR) which results from a low dose exposure could modify the risk of a subsequent radiation exposure, and conceivably could even provide a net benefit rather than the putative radiation detriment at low doses. The AR has been widely observed in human and other mammalian cells exposed to low doses and low-dose rates. The phenomenon has been demonstrated at the level of one track per cell, the lowest insult a cell can receive. The AR to radiation has been shown to: (i) protect against the DNA damaging effects of radiation and many chemical carcinogens; (ii) increase the probability that improperly repaired cells will die by apoptosis, thereby reducing risk to the whole organism; (iii) suppress both spontaneous- and radiation-induced neoplastic transformation in vitro; and (iv) reduce life- shortening in mice that develop myeloid leukemia as a result of a radiation exposure. It remains unclear, however, if the AR will be relevant to either risk assessment or radiation protection. There is currently no evidence of AR's influence on the incidence of radiogenic cancer in vivo although recent data indicate that adapting doses could lead to reduced risk in animal or human populations. Currently the existing dose control and dose management programs attempt to limit or eliminate even very low exposures, without evidence that such an approach has economic and societal benefits. Indeed, if adaptation from exposure to low doses provides the same responses in vivo as have been shown in vitro, then the current approach to protection against low doses may be counterproductive. However, the demonstrated principles of the adaptive response to radiation in vitro will not likely influence the long held current formulation of radiation protection practices until the biological action of accumulated low doses of radiation in vivo and its impact on the modulation of radiation carcinogenesis are better understood.
Article Details
Section
Articles