Fabrication of Simulated Mid-Burnup CANDU Fuel in the RFFL

Main Article Content

F.C. Dimayuga

Abstract

Prediction of the coefficient of void reactivity for CANDU® reactor cores is key to modeling postulated loss-of-coolant scenarios to support safety analyses. To reduce the uncertainty in these predictions, computer codes used to generate the predictions have to be well validated for cores at equilibrium burnup. To this end, a COG*-funded project was launched to resume mixed oxide (MOX) fuel fabrication operations in the mothballed Recycle Fuel Fabrication Laboratory (RFFL) at CRL, and produce (U,Pu)O2 fuel simulating mid-burnup CANDU fuel for physics testing in the ZED-2 reactor.

In August 1996, rehabilitation of the RFFL was completed, and MOX operations were resumed in the facility. An up-to-date description of the RFFL, including the upgraded safety systems and process equipment, is presented. An overview of the fabrication campaign to produce 37 MOX fuel bundles for ZED-2 tests is given. The fabrication process used to manufacture the fuel from the starting powders to the finished elements and bundles is summarized. Fabrication data including production throughputs and inspection results is discussed.

Article Details

Section
Articles