Bulging of Pressure Tubes at Hot Spots Under LOCA Conditions

Main Article Content

C. Manu
A.C.D. Wright
R. Aboud
J.H.K. Lau
R.S.W. Shewfelt
D.B. Sanderson

Abstract

During certain postulated loss-of-coolant accidents (LOCA) in a CANDU reactor, some fuel channels can become highly voided within a very short time. Although the pressure tubes are heated mainly by convection and thermal radiation during the LOCA transient, additional heat flow occurs through the hearing pads that are in contact with the pressure tube. This contact can lead to local hot spots and associated thermal stresses in the pressure tube wall. The two factors that affects the behavior of the pressure tubes during LOCA conditions are the internal pressure and the local heating. Although the effect of internal pressure and of axially uniform temperature has been studied elsewhere, the effect of the local heating on the pressure tube behavior has not been modelled before. This paper shows that the bulging of a pressure tube at a hot spot is the result of the thermal stresses that are developed in a pressure tube during a LOCA transient. To isolate the local heating effect from the internal pressure, a series of single-effect experiments was performed. In these experiments, sections of a CANDU pressure tube were subjected to local heating only. The thermal profile and the local deformation were measured us function of time.

Article Details

Section
Articles