CANDU-9 Nuclear Power Plant Simulator

Main Article Content

Mahmoud Kattan
Mike MacBeth
Kwok Lam

Abstract

Simulators are playing an important role in the design and operations of CANDU reactors. They are used to analyze operating procedures under standard and upset conditions. The CANDU 9 nuclear power plant simulator is a low fidelity, near full scope capability simulator. It is designed to play an integral part in the design and verification of the control centre mock-up located in the AECL design office. It will also provide CANDU plant process dynamic data to the plant display system (PDS), distributed control system (DCS) and to the mock-up panel devices. The simulator model employs dynamic mathematical models of the various process and control components that make up a nuclear power plant. It provides the flexibility to add, remove or update user supplied component models. A block oriented process input is provided with the simulator. Individual blocks which represent independent algorithms of the model are linked together to generate the required overall plant model. As a design tool the simulator will be used for control strategy development, human factors studies (information access, readability, graphical display design, operability), analysis of overall plant control performance, timing estimates for major control loops and commissioning strategy development. As a design evaluation tool, the simulator will be used to perform routine and non-routine procedures, practice 'what if' scenarios for operational strategy development, practice malfunction recovery procedures and verify human factors activities. This paper will describe the CANDU 9 plant simulator and demonstrate its implementation and proposed utility as a tool in the control system and control centre design of a CANDU 9 nuclear power plant.

Article Details

Section
Articles