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Summary 

The appropriate description of heat-transfer to coolants at supercritical state is one of the main 
challenges in development of supercritical-fluids applications for the Generation—W reactors. In 
this paper the basis for comparison of relatively recent experimental data on supercritical carbon 
dioxide (CO2) obtained at facilities of the Korea Atomic Energy Research Institute (KAERI) and 
Chalk River Laboratories (CRL) of Atomic Energy of Canada Limited (AECL) is discussed, and 
a preliminary heat-transfer correlation for joint CRL and KAERI datasets is presented. 

1. Introduction 

The majority of experiments with forced convective flow of fluid at SuperCritical (SC) state 
where done with water. Starting from early experiments in the late 50's and early 70's [1-6], the 
general behavior of SuperCritical Water (SCW) was described. Researchers have noticed that at 
a certain combination of inlet parameters, the wall temperature along the heated part of the tube 
for SCW flow would experience a sharp increase. Such generic behavior was called a 
Deteriorated Heat Transfer (DHT). It was also noticed that DHT at SC conditions caused much 
smoother wall temperature distribution and lesser temperature jumps compared to the case of 
DHT caused by reaching Critical Heat Flux (CHF) at subcritical conditions. Although 
researchers spotted similar behavior, the actual data on heat transfer to SCW showed 
considerable variations [7-8], and, therefore, criteria for the onset of DHT proposed by various 
authors differ and often contradict each other. In addition to this, numerous semi-empirical 
models proposed to describe the experimental data since the mid 60's turned out to satisfactorily 
describe just the data they were designed for. In the end, finding these data is generally a 
challenging task for the following reasons: 

1) Generally, these data are commercial or proprietary. 

2) Many datasets, especially, those obtained before 1965, were lost. In some cases, 
investigators who knew the location of the data died or retired; in some cases, the data were 
never properly archived; in other cases, laboratories, where the data were obtained were 
closed (e.g., UKAEA) [9]. Groeneveld et al. estimated that only a half of the originally 
reported data on heat transfer to water at SC conditions is available [9]. 
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3) The bulk of available data are in graphical form. Accuracy of digitized data depends both on 
the quality of the original graphs and also on the quality of the digitizing software. 
Moreover, experimentalists would be able to publish just small portions of their data due to 
the limitations of publications. 

Therefore, due to the importance of resolving the problem of accurate prediction of heat transfer 
to SCW, the International Atomic Energy Agency (IAEA) established a coordinated research 
project "Heat Transfer Behavior and Thermal-Hydraulics Code Testing for Super-Critical Water-
cooled Reactors". The first step of this project is to "establish a base of accurate data for heat 
transfer, pressure drop, blowdown, natural circulation, and stability for conditions relevant to 
super-critical fluids [10]. 

Since the critical parameters of water are very high (22.064 MPa and 374.1°C), performing 
forced-convection heat-transfer experiments in SCW is a complex and expensive task. 
Therefore, it is reasonable to study general properties of SC fluids by running experiments with 
modeling fluids (sometimes, the term 'surrogate fluids' is used instead). CO2 and R-134a are the 
two most widely used modeling fluids. Under certain conditions, the results can be later 
interpreted and scaled to SCW conditions (for a discussion on proper scaling methodology, see 
References [11-12]). In comparison, critical parameters of CO2 (7.38 MPa and 30.48°C) are 
significantly lower than those of SCW (see Figure 1). 
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Figure 1. Fressure-temperature diagram for water (a) and CO2 (b) (data were calculated 

using NIST Refprop v9.0) 

The development of sophisticated theoretical models is very important for improving the 
understanding of physical processes behind the forced-convective heat-transfer and its 
deterioration in the near-critical region. However, not all turbulent models implemented in 
Computational Fluid Dynamics (CFD) codes are applicable to heat transfer at supercritical 
pressures. Numerous recent worldwide CFD studies showed that models based on the Reynolds 
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number Averaged Navier-Stokes (RANS) equations are able to capture temperature trends at 
normal conditions and predict the onset of deterioration; however, these models fail to capture 
deteriorated heat transfer numerically [13-17]. It should be noted that in most of these works, 
CFD results were validated based on old data presented in [5-6], [18]. Only one study was 
validated against more recent data [resented in [19]. Therefore, there is still a great reliance on 
1D heat-transfer correlations for fast preliminary calculations. 

The majority of empirical correlations were proposed in the 1960s — 1970s, when experimental 
techniques were not at as advanced level as they are today. Also, thermophysical properties of 
fluids have been updated since that time (for example, a peak in thermal conductivity of water in 
critical and pseudocritical points within a range of pressures from 22.1 to 25 MPa was not 
officially recognized until the 1990s) [14], [20]. Although, there were numbers of more recent 
correlations developed for water [21-24], there were only two recent correlations proposed for 
CO2 (see [25-26]) based on the data obtained by Dr. Pioro at Chalk River Laboratories (CRL) 
[7]. Unfortunately, previous analysis of the latter two correlations (Saltanov et al., 2013) showed 
that they fail to predict SC CO2 data obtained in different experiments. Therefore, they should 
be revised, and the reason for their failure must be established. Also, data on heat transfer to 
SCW used at SC fossil-fired plants cannot be used directly, because typical hydraulic diameters 
are around 18 mm, while in SuperCritical Water-cooled Reactors (SCWRs) those will be 
between 4 — 9 mm. This significantly affects the development and distribution of velocity and 
thermal fields across the heated channel. 

2. Basis for Comparison of the Joint Datasets 

The KAERI and AECL datasets were compared based on the similarity of heat flux at the inlet 
to test-section (see Figures 2-3). 

The following are the major conclusions of this comparison: 
• The results are consistent for the same geometry and slight variation of input 

parameters; 
• There is a clear similarity in the pattern of the data between different geometries in the 

cases of close values of heat and mass fluxes. Similarity based on Tb may be one of 

the uniting parameters for the experimental data. 

The major problem of this comparison is the lost information on the location. The authors of 
this paper expect that behavior could be better generalized based on the non-dimensional 
"coordinate" which is introduced here as follows: 
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Figure 2. Comparison of ICAERI and AECL data based on similarity of heat flux at the inlet to 
the test-section (a - P- 8.85 MPa, q=30 kW/m2, d=4.4 mm (ICAERI), d = 8.1 mm (AECL); b - 

P=7 .75 MPa, q=110 kW/m2, d=4.4 mm (KAERI), d = 8.1 mm (AECL)); 
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Figure 3. Comparison of ICAERI and AECL data based on similarity of heat flux at the inlet to 
the test-section (a - P=8.85 MPa, q=150 kW/m2, d=4.4 mm (ICAERI), d = 8.1 mm (AECL); b 
- P=7.75 MPa, q=35-38 kW/m2, d=6.32 mm (KAERI), d = 8.1 mm (AECL)); 

3. A Preliminary Heat-Transfer Correlation for Joint CRL and ICAERI datasets. 

Following the methodology discussed in Reference 127], the authors developed the following 
preliminary correlation for join CRL and ICAERI data: 
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3. A Preliminary Heat-Transfer Correlation for Joint CRL and KAERI datasets. 

Following the methodology discussed in Reference [27], the authors developed the following 
preliminary correlation for join CRL and KAERI data: 
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(All symbols are defined in Section 5). DHT points were removed based on a visual inspection, 
and points affected by buoyancy were removed as well. 

The RMS for this correlation is 23% for HTC and 4% for Tw. The range of applicability of 
correlation Eq. (2) is shown in Table 1. Due to the limitations on the size of the extended 
abstract the authors cannot present or discuss more of their work on the subject. 

Table 1. Range of applicability of Eq. (2). 
P, MPa G, kg/m2s q, kW/m2 Tb,°C D, mm 

7.57-8.91 199-3048 9.9-616 5-161 4.4-9.0 

4. Conclusions 

A basis for comparison of the KAERI and AECL datasets was discussed. The discussion 
prompted an idea to generalize data based on a new non-dimensional "coordinate", which was 
introduced in the paper. Based on a standard methodology, a preliminary correlation for joint 
CRL and KAERI data was presented. Although RMS error is quite high (23%), the 
correlation is considered as a success, because it is valid for a wide range of experimental 
parameters and hydraulic diameters. 
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5. Nomenclature 

Symbols 

d, D hydraulic diameter, mm 
G mass flux, kg/m2. s 
h specific enthalpy, J/kg 
k thermal conductivity, W/m•K 
P pressure, Pa 
q heat flux, W/m2
T temperature, K 

Greek Letters 

p dynamic viscosity, Pa• s 
p density, kg/m3

Dimensionless Numbers 

Nu Nusselt number 

Pr_ave, Pr 

(RTC. D) 

( h - h pl 
Average Prandtl number I

T 
 b I 

T h kJ 

6. Acknowledgements 
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Subscripts 
ave 
b 
pc 
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Reynolds number 

average 
bulk-fluid 
pseudocritical 
wall 

Acronyms 
CFD 
CHF 
CRL 
DHT 
HTC 
IAEA 
KAERI 
RANS 

RMS 
SC 
SCW 
SCWR 
UKAEA 

p 

Computational Fluid Dynamics 
Critical Heat Flux 
Chalk River Laboratories 
Deteriorated Heat Transfer 
Heat Transfer Coefficient 
International Atomic Energy Agency 
The Korea Atomic Energy Research Institute 
Reynolds number Averaged Navier-Stokes 
equations 
Root Mean Square 
SuperCritical 
SuperCritical Water 
SuperCritical Water-cooled Reactor 
United ICingdom Atomic Energy Authority 

The authors would like to express their great appreciation to Dr. Y.Y. Bae from the KAERI for his 
valuable comments and suggestions on experimental data. 
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