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Abstract 

The Canadian supercritical water-cooled reactor (SCWR) is a conceptual heavy water moderated, 
supercritical light water cooled pressure tube reactor. In contrast to current heavy water power 
reactors, the Canadian SCWR will be a batch fuelled reactor. Associated with batch fuelling is a large 
beginning-of-cycle excess reactivity. Furthermore, radial power peaking arising as a consequence of 
batch refuelling must be mitigated in some way. In this paper, burnable neutron absorber (BNA) added 
to fuel and absorbing rods inserted into the core are considered for reactivity management and power 
flattening. A combination of approaches appears adequate to reduce the core radial power peaking, 
while also providing reactivity suppression. 

1. Introduction 

The Canadian supercritical water-cooled reactor (SCWR) is an advanced, Generation-W reactor 
concept being developed by Canadian Nuclear Laboratories (CNL) with national and international 
collaborators through the support of Natural Resources Canada (NRCan) [1]. The concept is a pressure 
tube-based, heavy water moderated, light water cooled reactor. Key features of the concept include 
enhanced safety, to be achieved through the use of the moderator to remove long term decay heat under 
various postulated accidents, and enhanced thermal efficiency, to be achieved through the use of 
supercritical water coolant in tandem with a direct thermodynamic cycle [2]. 

Previous reactor physics investigations have presented results on key SCWR physics parameters such 
as: exit burnup, channel peaking factors, coolant void reactivity ([3], [4]) and most recently, core 
kinetics parameters [5]. All previous studies have investigated so-called device-free cores, i.e. no 
reactivity control devices have been modelled for suppression of reactivity and power shaping. The 
current work incorporates control rods, analogous to the adjuster rods in a heavy water reactor (HWR), 
which remain in the core during normal operation for reactivity suppression. A further refinement to 
the SCWR concept, burnable neutron absorber (BNA) has been introduced into the fuel assembly to 
provide further initial reactivity suppression. The results of core calculations with these changes to the 
concept are presented in this paper. 

2. Lattice and Core Descriptions 

2.1 Lattice Description 

The current Canadian SCWR concept features a core with 336 vertical fuel channels, with each channel 
containing a 5 metre long fuel assembly. The fuel channel is made up of a pressure tube in direct 
contact with the surrounding moderator. On the inside of the pressure tube is a zirconia insulator and a 
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zirconium-modified stainless steel liner tube. The fuel assembly itself is made up of two rings of 32 
plutonia-thoria fuel elements. One significant modification from previous versions of the SCWR 
lattice is the addition of BNA to eight of the elements in each of the rings. These elements contain 4% 
gadolinia (Gd203 in Pu02/Th02) to provide initial reactivity suppression in fresh fuel. The gadolinia-
containing elements have been staggered mainly to reduce temperature effects. The rationale behind 
this choice of burnable neutron absorber is discussed in the results section of this paper. The lattice cell 
is illustrated in Figure 1, while material and geometry specifications are listed in Table 1. 

The centre portion of the fuel channel contains a coolant flow tube. Coolant enters from the top of the 
core, flows down through the flow tube, reverses direction at the end of the channel, and flows back up 
over the fuel, and exits the reactor through outlets above the channels. The presence of a large volume 
of water in the centre of the fuel assembly provides a substantial amount of neutron moderation. This 
moderation leads to balanced power profiles in the two rings of fuel, as well as a negative coolant void 
coefficient. A cross-sectional view of the SCWR, with schematic illustrating the flow tube, is shown in 
Figure 2. 
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Figure 1 Cross-sectional view of the 64-element SCWR assembly, channel, and lattice cell 

- 2 of 13 - 

35th Annual Conference of the Canadian Nuclear Society 
39th Annual CNS/CNA Student Conference 

 

2015 May 31 – June 03 
Saint John Hilton Hotel and Conference Centre 

 
 
 

 
zirconium-modified stainless steel liner tube.  The fuel assembly itself is made up of two rings of 32 
plutonia-thoria fuel elements.  One significant modification from previous versions of the SCWR 
lattice is the addition of BNA to eight of the elements in each of the rings.  These elements contain 4% 
gadolinia (Gd2O3 in PuO2/ThO2) to provide initial reactivity suppression in fresh fuel.  The gadolinia-
containing elements have been staggered mainly to reduce temperature effects.  The rationale behind 
this choice of burnable neutron absorber is discussed in the results section of this paper. The lattice cell 
is illustrated in Figure 1, while material and geometry specifications are listed in Table 1. 

The centre portion of the fuel channel contains a coolant flow tube.  Coolant enters from the top of the 
core, flows down through the flow tube, reverses direction at the end of the channel, and flows back up 
over the fuel, and exits the reactor through outlets above the channels.  The presence of a large volume 
of water in the centre of the fuel assembly provides a substantial amount of neutron moderation.  This 
moderation leads to balanced power profiles in the two rings of fuel, as well as a negative coolant void 
coefficient.  A cross-sectional view of the SCWR, with schematic illustrating the flow tube, is shown in 
Figure 2. 
 

 
Figure 1 Cross-sectional view of the 64-element SCWR assembly, channel, and lattice cell 

 
  

- 2 of 13 - 
 



35th Annual Conference of the Canadian Nuclear Society 2015 May 31 - June 03 
39th Annual CNS/CNA Student Conference Saint John Hilton Hotel and Conference Centre 

Table 1 Material and Geometry Specifications 

Component Dimension Material Composition (wt%) 
Density 
(g/cm3) 

Central Coolant 
(inside flow tube) 

4.60 cm radius Light Water 100% H2O variable 

Flow Tube Inner 
Cladding 

4.60 cm inner radius (IR) 
0.1 cm thick 

Zr-modified 310 
Stainless Steel 
(Zr-mod SS) 

C:0.034; Si:0.51; Mn:0.74; P:0.016; 
S:0.0020; Ni:20.82; Cr:25.04; 
Fe:51.738; Mo:0.51; Zr:0.59 

7.90 

Inner Pins 
(No BNA) (24) 

0.415 cm radius 
5.4 cm pitch circle radius 

15 wt% 
PuO2/ThO2

Pu:13.23; Th:74.70; 0:12.07 9.91 

Outer Pins 
(No BNA) (24) 

0.440 cm radius 
6.575 cm pitch circle 
radius 

12 wt% 
PuO2/ThO2

Pu:10.59; Th:77.34; 0:12.08 9.87 

Inner Pins 
(BNA) (8) 

0.415 cm radius 
5.4 cm pitch circle radius 
(evenly spaced, it/8 
angular offset) 

15 wt% 
PuO2/ThO2; 
4 wt% Gd2O3 in 
PuO2/ThO2

Pu: 12.70; Th: 71.71; Gd 3.47; 
0: 12.52 

9.80 

Outer Pins 
(BNA) (8) 

0.440 cm radius 
6.575 cm pitch circle 
radius(evenly spaced, no 
angular offset) 

12 wt% 
PuO2/ThO2; 
4 wt% Gd2O3 in 
PuO2/ThO2

Pu: 10.16; Th: 74.24; Gd 3.47; 
0: 12.12 9.76 

Cladding 0.06 cm thick Zr-mod SS As above 7.90 
Coolant n/a Light Water 100% H2O variable 

Liner Tube 
7.20 cm IR 
0.05 cm thick 

Zr-mod SS As above 7.90 

Insulator Zirconia 
7.25 cm IR
0.55 cm thick 

(ZrO2) Zr:66.63; Y:7.87; 0:25.5 5.83 

Outer Liner 
7.80 cm IR 
0.05 cm thick 

Excel (Zirconium 
Alloy) 

Sn:3.5; Mo:0.8; Nb:0.8; Zr:94.9 6.52 

Pressure Tube 
7.85 cm IR 
1.2 cm thick 

Excel (Zirconium 
Alloy) 

Sn:3.5; Mo:0.8; Nb:0.8; Zr:94.9 6.52 

Moderator 25 cm square lattice pitch D20 99.833 D20; 0.167 H2O 
variable 
(1.0851, 
nominal) 

Reactor Grade- 
Pu 

Pu-238:2.75; Pu-239:51.96; 
Pu-240:22.96; Pu-241:15.23; 
Pu-242:7.10 

Adjuster Rods 3.3 cm radius 
Stainless steel 
alloy 304L 

C: 0.037; Fe: 72.761; Si: 0.46; Ni: 
8.43; Mn: 1.282; Cr: 17.12 

7.9 
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The SCWR is intended to generate 2540 MW of thermal power. Nominal core parameters are listed in 
Table 2. The three-batch refuelling scheme (shown in Figure 3) remains unchanged from previous 
studies. Improvements in the channel power distribution and axial powerpeaking factors may be 
possible through further act ustments of the refuelling scheme but were not investigated in this study. 

The adjuster rods used in this study are modelled after stainless steel CANDU adjuster rods. The rods 
are cylindrical with a radius of 3.3 cm, composed at stainless steel alloy 304L with composition 
provided in Table 1. Further information about rods and their locations is provided in Section 4.2.1. 

Tabis 2 Nominal Con Specifications 
Parameter elME6 

Theme Power 2540 MW 
Electric Power 1200 MW 

Inlet/ Oaattomperatureo 350•C I 625•C 

Inlet 100/etpteescran 26 MN /25 MN 

Channels 336 
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Figure 2 SCWR Core Schematic (from [6]) 

2.2 Core Description 

The SCWR is intended to generate 2540 MW of thermal power.  Nominal core parameters are listed in 
Table 2.  The three-batch refuelling scheme (shown in Figure 3) remains unchanged from previous 
studies.  Improvements in the channel power distribution and axial power peaking factors may be 
possible through further adjustments of the refuelling scheme but were not investigated in this study. 

The adjuster rods used in this study are modelled after stainless steel CANDU adjuster rods.  The rods 
are cylindrical with a radius of 3.3 cm, composed of stainless steel alloy 304L with composition 
provided in Table 1.  Further information about rods and their locations is provided in Section 4.2.1. 
 

Table 2 Nominal Core Specifications 
Parameter Value 

Thermal Power 2540 MW 
Electric Power 1200 MW 

Inlet / Outlet temperatures 350ºC / 625ºC 
Inlet / Outlet pressures 26 MPa / 25 MPa 

Channels 336 
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Lattice Pitch 25 cm 

Core Radius (Including radial realm 
region) 

355 cm 

Core Hedght (Including axial D,O reflector 
regions) 

650 cm 

Ur axial reflector thickness 75 cm 
Lower axial reflector thickness 75 cm 

Fuel Assembly Length 503 cm 

Fuel batches 3 
Target exit bunny 40 MWd / kg 

Target LYR < 0 

Adjuster Rods 
Five vertical banks 

of 14 horizontal rods 
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Figure 3 SCWR quarter core channel wend fuel loading scheme 

Lattice physics calculations were performed using WIMS-AECL 3.1.2 [7] with an ENDF/B VII.0 
based nuclear data library [8]. Two group homogenized cross sections were produced from WIMS-
AECL output data using WIMS UTILITIES 2.0.3 [9]. Full core, 3D diffusion calculations were 
performxl. with RFSP 3.5.1 [10]. RFSP uses, as input, two-group homogenized cross sections, which 
are produced by homogenizing results of WIMS-AECL calculations with the WIMS-UTILITIES suite 
of codes. 

The adjuster rods were incorporated into the RFSP core model through the use of incremental cross 
sections calculated with the code DRAGON 306G [11] using the method described in [12]. The 
incretieutal cross sections were determined for a previous 78-elerrent SCWR fuel assembly. The use 
of incientntal cross sections based on this previous fuel assembly concept is deemxd to be adequate to 
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Figure 3 SCWR quarter core channel map and fuel loading scheme 

3. Codes Used 

Lattice physics calculations were performed using WIMS-AECL 3.1.2 [7] with an ENDF/B VII.0 
based nuclear data library [8].  Two group homogenized cross sections were produced from WIMS-
AECL output data using WIMS UTILITIES 2.0.3 [9].  Full core, 3D diffusion calculations were 
performed with RFSP 3.5.1 [10].  RFSP uses, as input, two-group homogenized cross sections, which 
are produced by homogenizing results of WIMS-AECL calculations with the WIMS-UTILITIES suite 
of codes. 

The adjuster rods were incorporated into the RFSP core model through the use of incremental cross 
sections calculated with the code DRAGON 306G [11] using the method described in [12].  The 
incremental cross sections were determined for a previous 78-element SCWR fuel assembly.  The use 
of incremental cross sections based on this previous fuel assembly concept is deemed to be adequate to 
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determine qualitative trends of core behaviour and may be refined to reflect the current fuel concept in 
future studies. 

4. Results and Discussion 

4.1 Lattice Physics with Burnable Neutron Absorber 

The purpose of adding BNA to fresh fuel is to achieve initial reactivity suppression. The best option 
for reactivity suppression includes an amount of BNA added to the assembly that: 

1) Adequately suppresses reactivity initially, 
2) Has minimal effect on achievable exit burnup, 
3) Has minimal reactivity swing associated with depletion of burnable absorber. 

It has been shown that gadolinium possesses the most favorable characteristics of a neutron absorber: 
namely that it burns out in a time long enough to provide initial reactivity suppression, but not too long 
as to adversely affect fuel burnup. 

Scoping to determine an appropriate concentration of gadolinia to add to the fuel was done through 
WIMS-AECL lattice calculations. As described in Section 2.1 and illustrated in Figure 1, the gadolinia 
was added to eight of the fuel elements in each ring of fuel. Shown in Figure 4 are the results of lattice 
reactivity vs. burnup for three concentrations of gadolinia plus the case where no BNA was added. 
Based on these results, the concentration of 4% gadolinia in 16 fuel pins was determined to provide 
adequate reactivity suppression with little decrease in lattice exit burnup. When compared to the case 
with no BNA in the fuel, the burn-out period for the gadolinia appears to be slightly more than 
40 MWd/kg, i.e. the lattice reactivity returns to that of fuel with no BNA. 

1.4 
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0.8 

0 

--............. 

No BNA 

3.5% BNA 
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20 40 60 80 

Burnup (MWd/kg) 
Figure 4 Lattice k-infinity vs burnup for various BNA concentrations 

4.2 Core Simulations 

The SCWR is batch fuelled and has a large excess reactivity at the beginning of each cycle (up to 
100 mk when no BNA is present in fresh fuel). Associated with batch fuelling is the need to suppress 
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the large beginning-of-cycle (BOC) excess reactivity. Further, radial power peaking arising as a 
consequence of batch refuelling must be mitigated in some way. The core simulations were performed 
to demonstrate the effectiveness of burnable poisons and adjuster rods and calculate the size of the 
associated reactivity penalty. 

Full core simulations were performed for three cases: 

• Full core with neither BNA in the fuel nor adjuster rods. 

• Full core with fuel containing BNA, but with no adjuster rods (unrodded). 

• Full core with fuel containing BNA and with adjuster rods (rodded). 

Results for the core without BNA in the fuel or adjuster rods are shown for comparison with previous 
results, which also did not include reactivity suppression. Results for the core containing fuel with 
BNA in the fuel but without adjuster rods are shown in order to better show the impact of the adjuster 
rods on power shaping. Results for the integral full core performance parameters are shown in Table 3. 

Table 3 Full Core Performance Parameters 

Parameter 
Core with no BNA 

added to Fuel 
Reference Core 

(Unrodded) 
Reference Core 

(Rodded) 

Average initial wt% Pu02 13.0 13.0 13.0 

Average initial fissile wt% heavy element 8.6 8.6 8.6 

Average Exit Burnup (MWd/kg) 57.5 41.6 41.6 

Cycle Length (EFPD) 405 289.5 289.5 

Excess Reactivity BOC / EOC (mk) 100 / 11.8 31.3 / 10.0 14.7 / 0.7 

Channel Power Peaking Factor BOC / EOC 1.30 / 1.21 2.03 / 1.28 1.15 / 1.19 

Axial Power Peaking Factor BOC / EOC 1.20 / 1.05 1.28 / 1.20 1.21 / 1.30 

The results show the reactivity suppression possible through the use of BNA in the fuel and adjuster 
rod use. A reduction of almost 70 mk is achieved through the use of BNA in fresh fuel. This could not 
be achieved through soluble poison in the moderator as this would: a) require too much dissolved 
poison which could lead to precipitation out of solution, b) result in a positive moderator temperature 
coefficient of reactivity and c) reduce the effectiveness of the reflector. 

By using BNA in combination with the adjuster rods, BOC excess reactivity is approximately 15 mk; 
this is within the realm of possibility for soluble poison in the moderator. 

The penalty incurred for using a large amount of neutron absorbing material is substantial. A reduction 
in the operating cycle of nearly 120 days is observed, corresponding to a reduction in achievable 
burnup. 

4.2.1 Adjuster Rod Positions 

The number of adjuster rods and their configuration are based on preliminary scoping analyses, rather 
than detailed optimization. The results presented here are intended to demonstrate the feasibility of the 
combined use of BNA and adjuster rods for reactivity suppression and power shaping. Further 
optimization would likely yield further improvements in the core channel power distribution and 
reduce the impact on achievable exit burnup. 
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The number of adjuster rods and their configuration are based on preliminary scoping analyses, rather 
than detailed optimization.  The results presented here are intended to demonstrate the feasibility of the 
combined use of BNA and adjuster rods for reactivity suppression and power shaping.  Further 
optimization would likely yield further improvements in the core channel power distribution and 
reduce the impact on achievable exit burnup. 

- 7 of 13 - 
 



35th Annual Conference of the Canadian Nuclear Society 2015 May 31— June 03 
39th Annual CNS/CNA Student Conference Saint John Hilton Hotel and Conference Centre 

The positions of the adjuster rods are shown in Figure 5. The side view of the reactor is shown in 
Figure 5B, showing the five banks of seven horizontal rods. On the opposite side of the reactor are 
another five banks of seven rods, making a total of 14 rods that can be moved independently. The top 
view, showing all rods inserted is in Figure 5A. A side view, showing the axial positions of the 
adjuster rods, is given in Figure 5B. 

These rods are expected to sit in the core during normal operation and are moved as necessary to 
provide flux shaping. Figure 5C and D show rod positions at beginning (BOC) and end of cycle 
(EOC), respectively. 
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Figure 5 Cross-sectional view of the full core channel layout, showing positions of inserted horizontal reactivity 
devices. A) Top view adjuster rod reference positions. B) Side view showing five banks of rods. C) Middle bank of 

rods at BOC position. D) Middle bank of rods at EOC positions 
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4.3 Core Power Profiles 

4.3.1 Reference Core: No BNA No Adjuster Rods 

The beginning and end of cycle radial power profiles are shown in Figure 6 respectively for the core 
using no BNA in fresh fuel. The channel powers shown in the figures are normalized to the average 
channel power of the reactor (2540 MW/336 channels = 7560 kW). 

The axial power profiles for the highest power channel at BOC and EOC are shown in Figure 7. 
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4.3.2 Core With BNA and No Adjuster Rods 

Core power profiles for BOC and EOC for the unrodded core are shown in Figure 8 while Figure 9 
shows the high power channel axial power profile at BOC and EOC. Compared to the core with no 
BNA added to the fuel, the power is more sharply peaked in the centre of the core. This effect is due to 
the burn-out period of the gadolinia in the fuel. 
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4.3.3 Core With BNA and With Adjuster Rods 

Power profiles for BOC and EOC for the rodded core with BNA are shown in Figure 10 while the axial 
power profiles for the high power channel at BOC and EOC are shown in Figure 11. 
The adjuster rods were changed at 50 day intervals in the simulation in an attempt to flatten the radial 
power distribution. The coarse adjuster rod movements used in the simulation were able to maintain a 
maximum channel power peaking factor of less than 1.2. It should be noted that the adjuster 
movements in this simulation do not represent optimal rod positions. The results shown here should be 
interpreted as demonstrating that power shaping is possible using the adjuster rods. It is anticipated that 
further refinement of the rod movement scheme, in combination with a revised refuelling scheme will 
lower the radial power peaking factor further. 
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5. Summary and Conclusions 

The use of BNA in SCWR fuel assemblies and adjuster rods for reactivity suppression and power 
shaping were examined. It has been demonstrated that the combination of BNA in the fuel and adjuster 
rods in the core can be successfully applied to suppress excess reactivity during operation and to 
improve (flatten) the channel power distribution. The use of BNA and adjuster rods, however, does 
result in a significant penalty to the maximum achievable exit burnup. Further optimization of the use 
of BNA and adjuster rods may lead to improvements in maximum achievable exit burnup and in the 
channel power distribution. 
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5. Summary and Conclusions 

The use of BNA in SCWR fuel assemblies and adjuster rods for reactivity suppression and power 
shaping were examined.  It has been demonstrated that the combination of BNA in the fuel and adjuster 
rods in the core can be successfully applied to suppress excess reactivity during operation and to 
improve (flatten) the channel power distribution.  The use of BNA and adjuster rods, however, does 
result in a significant penalty to the maximum achievable exit burnup.  Further optimization of the use 
of BNA and adjuster rods may lead to improvements in maximum achievable exit burnup and in the 
channel power distribution.   
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