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Summary 

Canada among many other countries is in pursuit of developing next generation (Gen-IV) nuclear-
reactor concepts. SuperCritical Fluids (SCFs) are expected to play a major role in the Gen-IV Nuclear 
Power Plant (NPP) applications. 

SC CO2 is proposed to be used as a modeling fluid to study the thermodynamic behavior of SCFs (especially 
water) as CO2 reaches supercritical conditions at relatively moderate temperature and pressures. A major 
objective in conducting SC CO2 experiments is to develop 1-D heat-transfer correlations that can be used to 
predict temperature profiles and used in other rudimentary heat transfer calculations. This paper presents 
some of the challenges associated with 1-D heat-transfer correlations. 

1. Introduction 

One of the main objectives of Generation-IV concepts is to achieve high thermal efficiencies of 45-50%. 
This can be achieved by increasing the operating temperatures and pressures of heat transport fluids beyond 
their critical pressure and temperature ranges. At these conditions, the fluids known as SuperCritical Fluids 
(SCFs) act as a single phase medium and resemble properties of dense gas [1]. 

SuperCritical Water-cooled reactor (SCWR) is a Gen-IV design concept that is being developed by AECL, 
Canada and that will utilize SC water in primary loop operating between temperatures of 350 — 600 °C with 
pressures up to 25 MPa. The SC-steam Rankine cycle can be used in a SuperCritical Water-cooled NPP 
(SCW NPP) with direct and indirect cycles. Other reactor concepts such as liquid-metal and molten-salt 
reactors can be also connected to the SC-"steam" Rankine cycle or SC CO2 gas-turbine cycle through heat 
exchangers. Thus, furthering our knowledge of HT processes in SCFs is a very active and exiting area of 
research. 

An important aspect towards development of SCF applications in novel Gen IV concepts is to understand the 
thermodynamic behaviour and prediction of Heat Transfer Coefficients (HTCs) at supercritical conditions. 
SC CO2 is proposed to be used as a modelling fluid to investigate mechanism associated with SCW and 
possibly, other fluids as well. A major advantage of using SC CO2 as a modelling fluid instead of SCW is 
significant reduction in experimental costs. CO2 achieves supercritical conditions at much lower 
temperatures and pressures - P„= 7.37 MPa and T„ = 30.97°C compared to those of water - P„= 22.06 
MPa and T„ = 373.95°C [2]. In addition, SC CO2 is also proposed to be used as a working fluid in the 
Brayton gas-turbine cycle as a secondary power cycle in some Generation-IV nuclear-reactor concepts such 
as a Sodium-cooled Fast Reactor (SFR), Lead-cooled Fast Reactor (LFR) and Molten-Salt-cooled Reactor 
(MSR). SC CO2 is also proposed to be used in advanced air-conditioning and Enhanced Geothermal 
Systems (EGS) [3]. 
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Figures 1 A and 1B, show transition of CO2 through various phases as its temperature and pressure are 
increased. 
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Figure IA: Pressure-Temperature diagram for CO2
[1]. 
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Figure IB: Transition of CO2 through various phases 
(Pictures taken from SC CO2 experiment performed by 
Faculty of Science, UOIT) 

2. Heat Transfer Coefficient (HTC) Calculations for SC Flows 

A critical step towards any elementary heat transfer calculations is to accurately predict the Heat Transfer 
Coefficient (HTC). HTC calculations can be very complex especially in Supercritical flow conditions, 
primarily due to the fact that there are very rapid variation of thermophysical properties during the transition 
of fluids to supercritical regions (see Figure 3). Traditional HTC correlations fail to account for these sharp 
property changes and there are no theoretical models that can accurately map the behaviour of SCFs in the 
transition phase. 

Furthermore, HTC is highly dependent on process conditions and can be significantly affected by nature and 
geometry of the heated surface. For example, the local flow conditions can be significantly impacted by 
additions of fins etc. on the heat transfer surface. Calculations of complex geometries are beyond the scope 
of the present research and can usually only be achieved by complex CFD codes and are fine tuned for that 
particular geometry. 
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Figure 1A: Pressure-Temperature diagram for CO2 
[1]. 

 
Figure 1B: Transition of CO2 through various phases 
(Pictures taken from SC CO2 experiment performed by 
Faculty of Science, UOIT) 
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Vivre 3: Thermophysicalpropertles profiles of SC CCti as function of temperature at 7.5 MP*: 
pseadocritical region in which all properties changes the most significantly is about +5°C from the 
pseadocritical lemperatue 

However, for ball park preliminary calculations generic correlations for barc-tuk SC correlations can be 
developed. A number of empirical 1-0 heat-transfer correlations have ken propomd for rudimentary 
calculations of HTC in forced convection bare-tube geometry application. Previous studies have shown that 
existing correlations such go Dittus-Boelter [4], Bishop et al. [5] etc. can product large errors while predicting 
HTC values and deviate significantly from experimental data within tic pa:ado-critical region (sec Figure 4) 

2.1 Development of New Empirical Correlations 

New correlations arc developed by applying data-fitting techniques to a model equation with dimensionless 
toms. Using statistical techniques three correlations were proposed by Gupta et al. [1] for Heat Transfer (HT) in 
SC COs (see Table 1). These SC CO2 correlations were developed at the University of Ontario Institute of 
Technology (UOIT, Canada) by using a large set of experimental SC-COI data (-4,000 data-points) obtained at 
the Chalk River Laboratories (CRL) AECL These correlations predict HTC values with an accuracy of +30% 
and wall temperatures (T) with an accuracy of +20% for the analyzed dataset. 
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Figure 3: Thermophysical-properties profiles of SC CO2 as function of temperature at 7.5 MPa: 
pseudocritical region in which all properties changes the most significantly is about ±5°C from the 
pseudocritical temperature [1]. 

However, for ball park preliminary calculations generic correlations for bare-tube SC correlations can be 
developed.   A number of empirical 1-D heat-transfer correlations have been proposed for rudimentary 
calculations of HTC in forced convection bare-tube geometry application.  Previous studies have shown that 
existing correlations such as Dittus-Boelter [4], Bishop et al. [5] etc. can produce large errors while predicting 
HTC values and deviate significantly from experimental data within the pseudo-critical region (see Figure 4)  

2.1 Development of New Empirical Correlations  

New correlations are developed by applying data-fitting techniques to a model equation with dimensionless 
terms.  Using statistical techniques three correlations were proposed by Gupta et al. [1] for Heat Transfer (HT) in 
SC CO2 (see Table 1).  These SC CO2 correlations were developed at the University of Ontario Institute of 
Technology (UOIT, Canada) by using a large set of experimental SC-CO2 data (~4,000 data-points) obtained at 
the Chalk River Laboratories (CRL) AECL.  These correlations predict HTC values with an accuracy of ±30% 
and wall temperatures (Tw) with an accuracy of ±20% for the analyzed dataset.  
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While these new correlations (Table 1) predict the AECL data with significantly improved accuracy, an important 
step towards their validity was to test their precision and applicability against other independent SC CO2 datasets 
with different flow conditions. Literature survey was conducted to filter for papers that contained SC CO2 data-
points. An Excel dataset was compiled by digitizing the graphs from He et. al (2005) [6] , Kim et al. (2005) [7] 
and Koppel (1960) [8] papers using UN-SCAN-IT Graph Digitizing Software (Silk Scientific Inc.). 
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Figure 4A: Comparison of HTC values calculated 
through various correlations with experimental data of 4-
m circular vertical bare tube (D=10mm): SCW, P15 —24 
MPa and G —1000 kg/m2s. 
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Figure 4B: Comparison of HTC values calculated 
through various correlations with experimental CRL data 
(SCCO 2) - vertical bare tube (/8.06 mm): Pin - 8.38 
MPa and G — 784 kg/m2s. 

Table 1: SC CO2 correlations developed using CRL dataset [1] 
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Mean and RMS error values were calculated for the HTC and T, numbers predicted by the new correlations. 
The predicted HTC deviated by average of ±50% and T, by ±30% for He, Kim and Koppel data. This marks a 
significant decrease in accuracy of these new correlations. It can be concluded that new correlations developed 
for SC CO2 were highly tuned for their base data-set and their application cannot be extended to other flow 
conditions. 
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3. Conclusions 

1. SCFs are expected to play a major role in the GenIV NPP applications. Important step towards successful 
development of these applications is to understand the Heat Transfer (HT) and thermodynamics of SCFs. 

2. Well established existing HTC correlations for forced convective HT produce significant errors when they are 
applied to calculate HTC and Tw values for SC conditions, especially within the pseudo-critical region. 

3. Many new empirical HTC correlations are being suggested world-wide developed from various SC 
experimental setups. While these correlations show good results for the data-sets they were developed for; 
they fail to transfer the results when compared against different experimental setups. Three independent 
SCCO2 datasets were analyzed and results of our analysis indicate that the correlations are highly tuned for 
the reference data-sets they were developed from and thus they have very narrow ranges of applicability. 
Limited range of applicability for 1D SCCO2 HTC correlations poses a significant challenge. 

4. More investigation in this area is warranted to develop a correlation that can predict wide range of SC flow 
conditions accurately and consistently. There is a need to standardize SC test apparatus and procedures to 
obtain a reliable reference SC database that may be then used to data-fit to empirical models. As future work 
it may be possible to propose a correlation that is developed using SC IAEA database. Nevertheless, presently 
it appears that there is no single correlation known to predict a wide range of SC experimental flow conditions 
consistently and accurately. 
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