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Abstract 

Iodine-induced stress corrosion cracking (I-SCC) is a dynamic process that can initiate the 
structural failure of fuel elements in a nuclear reactor. Consequently, as an affordable way to 
investigate I-SCC in the laboratory, a dynamic loading apparatus was designed to realistically 
reproduce the chemical and mechanical conditions during a fuel power-ramp operation in a nuclear 
reactor. This apparatus will significantly improve upon established C-ring SCC tests and will be a 
valuable tool for developing novel SCC mitigation strategies. This paper outlines the design and 
development of the dynamic loading SCC testing apparatus at the Royal Military College of Canada. 

1.0 Introduction 

In the CANDU® nuclear reactor, stress corrosion cracking (SCC) may compromise the Zircaloy-
4 cladding, which normally shields the uranium dioxide fuel pellets and efficiently transfers their heat 
to an external coolant. Stress corrosion cracking begins when a large stress field and corrosive fission 
products (e.g., I and Cs) are present. Initially, while the reactor is on-power, the cladding contracts 
under a compressive force applied by the coolant. Shortly afterward, fission-induced thermal 
expansion causes the cladding and fuel pellets to expand radially. Since the fuel expands more rapidly 
than the cladding, and because the cladding continues to creep down, the interfaces will eventually 
make direct contact. Eventually, additional fuel expansion beyond the initial contact will generate 
stress and strain fields in the cladding. 

It was believed that the application of a thin graphite-based layer (CANLUB) to the inner surface of the 
cladding reduces these stress and strain fields, thereby reducing the probability of SCC occurring [1]. 
Although the protection mechanism of CANLUB may be related to mechanical lubricating properties, 
it is more likely because of chemical properties [2]. In fact, the specific working mechanism of 
CANLUB remains unclear despite several SCC studies [1,3,4]. Consequently, further experimentation 
with specialized experimental equipment is necessary to better understand SCC-related phenomena and 
to develop new SCC mitigation strategies. 

Compared with previous C-ring SCC tests [5], the dynamic loading apparatus (DLA) described here 
will create more realistic and dynamic stress-strain fields, which are comparable to those created in 
CANDU nuclear fuel during power ramps. In addition, this apparatus will likely be a valuable tool in 
the development of novel SCC mitigation strategies. 
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2.0 Structural Design of the Dynamic Loading Apparatus (DLA) 

To facilitate the structural design of the DLA, previous experience will be drawn from SCC 
testing equipment developed by Atomic Energy of Canada Limited at Chalk River (AECL-CRL) [6]. 
The DLA (Figure 1) is a sectioned stainless steel cylinder containing four 6.45 cm diameter disks (three 
stainless steel disks and one ceramic disk). The cylindrical structure allows samples to be heated to 
350°C in a standard tube furnace. The stainless steel disks provide structural support for the DLA 
while the ceramic disk provides heat shielding for instruments outside the furnace. The electronics and 
control mechanisms are located well outside the heating area generated by the tube furnace. 

Non-Conductive Zone Heat Conductive Zone 

1 
3 4 
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Figure 1: Structural components of the DLA - 1) Stainless steel support disk; 2) Ceramic disk; 3) 
Support rods; 4) Inner stainless steel end cap; 5) Stationary sample holder assembly; 6) Access 

holes; and 7) Outer stainless steel end cap. 

The samples will be held in a sample holder and exposed to corrosive gas mixtures (e.g., I and Cs in 
He) within a containment vessel (Figure 2) that is end-capped by two 316 stainless steel disks. The end 
caps will be machined to accommodate Teflon gaskets and access holes. The gaskets seal the corrosive 
gas mixture in the containment vessel, while the access holes permit gas connections and 
instrumentation wiring (e.g., thermocouples, strain gauges, and a pressure transducer). Finally, the 
containment vessel wall, which is not depicted in Figure 1, will be a 2 mm thick 316 stainless steel 
sheet rolled into a cylinder. 

The sample holder for the split-ring Zircaloy-4 cladding samples will revolve around three parallel bars. 
Two bars will be stationary while a mobile third bar, attached to a controlled linear actuator, applies 
load to the samples. The cladding samples are held to the bars using a series of teeth-like structures as 
illustrated in Figures 2 and 3. The spacing between the stationary and mobile teeth at the unstressed 
position is the initial displacement of the C-ring. As the mobile centre bar is pushed into the 
containment vessel, a hoop stress is applied to the cladding samples. 

A programmable hybrid non-captive stepper linear actuator (Anaheim Automation, 11 AV102AX06-
SB) controls the applied stress to the split-ring cladding samples, with a displacement and cycling 
frequency that are controlled and recorded by an in-house designed LABVIEWTm program. The linear 
actuator will be located outside of the heated zone and will be connected to the centre-stressing bar 
through a heat shield and a 316 stainless steel Huntington bellows (Figure 3). 
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Figure 2: Components of the containment vessel - 1) Inner stainless steel end cap; 2) Outer 
boundary of the containment vessel; 3) Mobile rod; 4) Mobile teeth; 5) C-ring sample; 

6) Stationary sample assembly; and 7) Outer stainless steel end cap 
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Figure 3: Stressing mechanism in the DLA, which contains the following - 1) Stepper linear 
actuator; 2) Stainless steel support disk; 3) Load cell; 4) Ceramic disk; 5) Huntington bellows; 

6) Stainless steel end cap; 7) Mobile sample holder; and 8) Mobile bar. 

3.0 DLA Instrumentation and Measurement 

During operation, the DLA will measure the stress field applied by the linear actuator, as well as the 
temperature and pressure in the containment vessel. Accurate measurements of hoop stress will be 
achieved using two strain gauge configurations: 1) a strain gauge rosette (Tokyo Sokki Kenkyujo 
(TML), ZFCA-1-350) (Figure 4a); and 2) a unidirectional strain gauge (HITEC Products, Inc., HFK 
Series Free Filament) (Figure 4b). 

There are two reasons for implementing the strain gauge rosette. First, the perpendicular circuit 
combined with the quarter bridge allows for temperature compensation, so that stresses induced from 
thermal expansion can be differentiated from the stress induced by the linear actuator. Second, using a 
rosette with a regular bridge allows measurement of both the parallel and perpendicular strains on the 
rings. 
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Each configuration will have two resistance values, 120 C2 and 3501. Higher resistance strain gauges 
have higher strain sensitivity at the expense of reduced fatigue lifetime. Therefore, having both 
resistances allows measurements to be minimally compromised by sensitivity and lifetime. 

A load cell (Omega, LCFD-10) will be used to determine when a C-ring has failed. Since the 
experiments will be conducted in a tube furnace, no visual cues are available to indicate C-ring failure. 
Consequently, we will rely on a real-time graph of force vs. time, in which a sharp decrease in force 
below a constant operational value indicates each C-ring failure. 

Temperature measurements will be collected using K-type thermocouples (Omega, CA316SS-18U-12-
NHX) in a well that is fabricated in the outer end-cap of the containment vessel. The potential lag in 
temperature measurement is well outweighed by the benefit of having the thermocouple protected from 
the corrosive environment within the containment vessel. Finally, the total pressure will be measured 
using a pressure transducer (Omega, PX1009L0-025AV) located in the centre of the outer end cap of 
the containment vessel (Figure 2). 
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Figure 4: Circuit Schematic for Strain Gauges a) Strain Gauge Rosette b) Single Gauge 

4.0 Summary 

This paper has outlined the design of a DLA for performing SCC experiments in the laboratory. 
Construction of this apparatus is underway at RMCC. It is expected that the DLA will be a valuable 
tool in the development of novel SCC mitigation strategies for nuclear fuel. 
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