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Abstract 

A Bayesian approach to seismic fragility analysis of safety-related equipment is formulated. Unlike 
treating two sources of uncertainty of in the parameter estimation in two steps separately using the 
classical statistics, a Bayesian hierarchical model is advocated for interpreting and combining the 
various uncertainties more clearly in this article. In addition, with the availability of additional 
earthquake experience data and shaking table test results, a Bayesian approach to updating the fragility 
model of safety-related equipments is formulated by incorporating acquired failure and survivor 
evidence. Numerical results show the significance in fragility analysis using the Bayesian approach. 

1. Introduction 

Seismic equipment fragility, representing the seismic capacity of the equipment and the 
associated uncertainties, is a fundamental ingredient in seismic probabilistic risk assessment 
(SPRA) for nuclear power plants (NPP) [1]. To ensure adequate seismic capacity of NPP 
facilities, seismic design criteria have been specified by different organizations. American 
Society of Civil Engineers (ASCE) (2005) laid down a performance-goal based approach for 
NPP structures, i.e., to satisfy the performance goal, a mean frequency of 10-5/yr for seismic-
induced onset of significant inelastic deformation (FOSID), sufficient conservatism shall be 
introduced at the component-level to achieve both of the following: (1) less than 1% of 
unacceptable performance for the Design Basis Earthquake (DBE) ground motion, (2) less 
than 10% of unacceptable performance for the 150% DBE ground motion. US Nuclear 
Regulatory Commission (USNRC) [3] prescribed a plant-level requirement that all new plant 
designs must demonstrate a seismic margin of 1.67 corresponding to 1% probability of failure 
on "core damage" fragility curve. Nevertheless, plan-level seismic risk or margin depends on 
the fragility (capacity and the associated uncertainties) of individual component, thus the 
accuracy in fragility evaluation of safety-related equipment is of fundamental importance. 

The current lognormal fragility model that has been used in nuclear energy industry since the 
late 1970s, involves the estimation of two key parameters: median seismic capacity of a 
Structure, System, and Component (SSC) and its variability [2,4,5]. These parameters are 
estimated semi-empirically based on limited industry data from seismic safety studies of 26 
nuclear power plants, resorting to some engineering judgments. Two sources of uncertainty, 
i.e., aleatory uncertainty (due to inherent randomness) and epistemic uncertainty (due to lack 
of knowledge) [9], are introduced in determining the best estimate of median seismic 
capacity. Conservative estimates are often made, leading to wide confidence bands associated 
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with the median fragility curve. How to better estimate the median seismic capacity and 
reduce its epistemic uncertainty is a challenging yet rewarding task. Earthquake experience 
data and shaking table test results are believed to be valuable evidence for validating the 
model assumption, incorporating useful information, and updating empirical fragility 
estimate. Electric Power Research Institute (EPRI) has maintained an electronic earthquake 
experience database for evaluating the seismic adequacy of a wide variety of equipments 
since 1981 [6]. USNRC has made efforts in evaluating the Japanese Nuclear Energy Safety 
(JNES) equipment fragility test data for use in SPRA for US NPPs [1]. 

With the availability of newly acquired data, a brain draining task is how to incorporate the 
evidence into the empirical model. Bayesian approach is a proper mathematical tool for 
combining and updating the available information given in statistical form [7]. Some efforts 
have been made in developing the Bayesian approach to fragility analysis. Singhal and 
Kiremidjian [8] performed a Bayesian statistical analysis for updating earthquake ground 
motion versus damage relationships, where only the median damage index was assumed to be 
random and needed updating. Igusa et al. [9] proposed a Bayesian approach to analyze the 
two types of uncertainty for structural engineering applications. He employed the hierarchical 
Bayesian model to treat separately the aleatory and epistemic uncertainties before aggregation 
and developed insight into the different effects due to each uncertainty. Straub and Kiureghian 
[10] proposed an improved seismic fragility modelling from empirical data by explicitly 
considering the statistical dependence among empirical observations of the same equipment 
items mounted at various locations and endured multiple earthquakes. These efforts, however, 
either resorted to only the failure data or failure rate without handling survivor data, or 
employed complicated numerical simulations, thus are not immediately applicable to fragility 
analysis of nuclear facilities. Efforts in Bayesian fragility analysis of safety-related 
equipments in nuclear industry are still needed. 

In this article, a Bayesian formulation of seismic fragility analysis of safety-related equipment 
is proposed. In the following, after a brief introduction on seismic fragility analysis used in 
nuclear industry, a Bayesian interpretation of seismic fragility is presented, which employs 
the hierarchical Bayesian model. Next, a Bayesian updating process of seismic fragility is 
formulated. Finally numerical examples are presented to illustrate how Bayesian updating 
significantly affects the fragility results. 

2. Background on seismic fragility 

Seismic fragility of a structure, system, or component (SSC) of interest is usually defined as 
the conditional probability of failure (e.g., structural failure, functional failure) for a given 
ground motion parameter such as peak ground acceleration (PGA) or spectral acceleration at 
fundamental period. Such probability of failure is further represented by the ground motion 
capacity X of a SSC less than the ground motion level x (demand) as 

p f = P{X < x} . (1) 
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{ }fp P X x= < .                                (1) 
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Ground motion capacity X is the ground motion level at which the seismic response of the 
SSC results in its failure, and is often modelled as the product of three variables 

X = X. • ER AEU, (2) 

where X„, is the best estimate of median ground motion capacity, ER is the random variable 
representing aleatory uncertainty about the median, and s, is the random variable representing 
the epistemic uncertainty in estimating X„, due to lack of knowledge. ER and su are usually 
taken to be lognormal random variables with unit median and logarithmic standard deviations 
offiR and& , respectively. A major task of seismic fragility analysis is to estimate the median 

capacity X„, and the two logarithmic standard deviations fiR and flu . 

Taking logarithmic of equation (2), and letting Y =1n X , one has 

Y=P4+ 111 ER±Ineu, 

where ,u, =1n x„, ,1n ER — N(0, j62R ) , and In eu — N(0,g). 

Seismic fragility for a ground motion level x, non-exceedance level Q, can be derived as [4,5] 

p f = P{X <x1Q}= P{Y <y 1 0 . 0 [  y muY ± fiu(1) 1(Q)] 

18 R 
7 

(3) 

(4) 

where 43(.) is the standard Gaussian cumulative distribution function, and for Q = 5%, 50%, 
and 95%, equation (4) gives a family of fragility curves. 

Fragility can also be expressed in terms of the composite uncertainty, Pc , without separating 
aleatory and epistemic uncertainties, as 

Pf = P{X x} = Ply y} , (13 [  Y — PY  ] n , fic= VfiR+ it , (5) 
Pc 

which gives a single composite fragility curve or mean fragility curve. 

As an example, assuming the fragility parameters for a component are X„, =0.87g, fiR =0.25, 
andflu =0.35, a family of fragility curves with Q = 5%, 50%, and 95% and a composite 
fragility curve are determined using equations (4) and (5) as shown in Figure 1. 

3. Bayesian interpretation of seismic fragility 

When parameter estimation involves multiple levels of uncertainty, hierarchical Bayesian 
model can be applied for combining all sources of uncertainty [11]. In fragility analysis, the 
median seismic capacity of a SSC is estimated based on some generic quantities common to 
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1( )
{ | } { | } Y U

f
R

y Q
p P X x Q P Y y Q

µ β
β

− − + Φ
= < = < = Φ  

 
,             (4) 

where ( )Φ ⋅ is the standard Gaussian cumulative distribution function, and for Q = 5%, 50%, 
and 95%, equation (4) gives a family of fragility curves.  

Fragility can also be expressed in terms of the composite uncertainty, Cβ , without separating 
aleatory and epistemic uncertainties, as 

2 2{ } { } ,         Y
f C R U

C

yp P X x P Y y µ β β β
β

 −
= ≤ = ≤ = Φ = + 

 
,           (5) 
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Figure 1: Fragility curves 

this SSC in similar plants. The quantities of a SSC in a specific power plant thus carry 
aleatory uncertainty, controlled by irreducible chance or randomness. Yet another level of 
epistemic uncertainty exists, reflecting our lack of knowledge or information, and is reducible 
given newly acquired information. In the following, a hierarchical Bayesian model is applied 
for combining clearly these two types of uncertainty. 

Given the lognormal distribution of ground motion capacity X of a SSC: X — LN(p,o2), and 
letting Y =1n X , one has 

Y N(p,a2), or Y = p + R, where R— N(0, crR) , (6) 

where p is also uncertain, and has its own distribution 

p= py +U , where U N(0, cr) . (7) 

Combining equations (6) and (7), one has 

Y =py +U +R —N(py,cri 2 +c r23, 

which corresponds to the composite fragility case. 

If more than the composite fragility is of interest, from equation (7) one also has 

it=i4±cru's, 

(8) 

(9) 
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where s — N(0,1) is a standard normal random variable characterizing the epistemic uncertainty in 

estimating py . Associating s with non-exceedance level Q in the sense that sq = 0(1— Q) = —0(Q), 

one has 

Y I CR — MA, ± Cru ' s q , 0-2R ) = (lly — Cru • 0-1(Q), "R) (10) 

and corresponding to equation (4), one has 

p f = P(Y < y) = P(py + a u • sq < y) = P(py < y — a u • s q ) 

= 0 [  Y — Py — au *1 

cfR 

where aleatory and epistemic uncertainties are separated. It is seen that the Bayesian method 
provides a sound provision for combining different sources of uncertainty in a mathematically 
rigorous manner. 

Solving from the above equation, one has 

Y = Ily ± ciu • sq ± 
(TR • Sp, or 

x = X „, • exp(o-u • sp +6R • s p), 
(12) 

where sp = ort.-1(pf ) . Equation (12) shows how two types of uncertainty are propagated in 

estimating the ground acceleration level x for a failure probability p 1 and non-exceedance 

level Q, as shown in Figure 1 for p 1= 0.2, 0.5, 0.8. Substituting pi.= 0.05 and Q = 0.95 into 

equation (12) or reading the ground acceleration level corresponding to pi.= 0.01 from the 

composite fragility curve, yields the so called "High Confidence, Low Probability of Failure" 
(HCLPF) capacity 

YHCLPF = fl y + 6R  • (11) '(0.95) — a u • Cc' (0.05) = fly —1.645(6R + a u ), 

X HapF = X . exp[-1.645(au -F a R )]; 

YHCLPF = PY ± 6C  • -(1) 1 (0 .01) = P y - 2.326. crc , 

X limy  = X m exp[-2.326 • c c]. 

(13) 

(14) 

4. Bayesian updating of seismic fragility 

Besides providing a clearer interpretation of combining various types of uncertainty in 
parameter estimation, the Bayesian approach has significance in updating the model 
parameter as additional evidence or data becomes available. Subjective judgments based on 
experience or indirect information can be combined systematically with observed data to 
obtain a balanced, informed, thus more convincing estimation using the Bayes' Theorem. 
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X X

µ σ σ µ σ σ
σ σ
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For Bayesian fragility analysis, the interest lies in updating the probability distribution of Y 
given observed evidence E, which may include a number of equipment failures and survivors 
for a level of ground shaking. To do so, prior distribution of p must be updated first based on 
the observed evidence, and then combines with the conditional probability distribution of Y 
given p to give the posterior Y. 

4.1 Prior distribution of u 

The distribution of p reflects our state-of-knowledge of parameter estimation, which is the 
epistemic uncertainty part, and is given as 

2 

fU(P)= 1  exp [ 1 P PY — Nu (//y ) • 
-‘12iro-u 2 a u

4.2 Likelihood function 

(15) 

Our state-of-knowledge of p can be improved by combining the observed evidence E through 
the likelihood function. 

4.2.1 Failure data 

Given evidence of n observed failures y=rv1, v2 • • • v 1 E, the likelihood function is —

L(E1,0=Lcto=ll fu(Y,0-,2,) • 
1=1 

Since the product of n normal cumulative density functions is also normal, one has 
0 -2 — n

L(,U) NU( U), Y=  1 1,y1 
n n 1=1

4.2.2 Survivor data 

For survivor data, the likelihood is given in the form of cumulative distribution function 

(16) 

(17) 

L(E I ,u) = L(,u) =11P(Y - yi > 0) = il e,[ Yi-/-11Ru(yi,p,o-12/) , (18) 
i=1 CrU 1=1 

where Ru(yi,p,ot) is the complementary cumulative density function of p. 

4.3 Posterior function of u 

4.3.1 Failure data 

.4;(1.1)= k • L(11) fU(P)=r1fu(y,,ot) • fU(p), (19) 
1=1 

- 6 of 13 pages - 

34th Annual Conference of the Canadian Nuclear Society 
37th Annual CNS/CNA Student Conference 

 

2013 June 9 – June 12 
Toronto Marriott Downtown Eaton Centre Hotel 

 
 
 

 
For Bayesian fragility analysis, the interest lies in updating the probability distribution of Y 
given observed evidence E, which may include a number of equipment failures and survivors 
for a level of ground shaking. To do so, prior distribution of μ must be updated first based on 
the observed evidence, and then combines with the conditional probability distribution of Y 
given μ to give the posterior Y. 

4.1 Prior distribution of μ  

The distribution of μ reflects our state-of-knowledge of parameter estimation, which is the 
epistemic uncertainty part, and is given as  

2
' 21 1( ) exp  ~  ( , )

22
Y

U U Y U
UU

f Nµ µµ µ σ
σπσ

  − = −     
.               (15) 
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Our state-of-knowledge of μ can be improved by combining the observed evidence E through 
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Given evidence of n observed failures y 1 2[ , ,..., ] Eny y y= = , the likelihood function is 
2

1
(E | ) ( ) ( , )

n

U i U
i

L L f yµ µ σ
=

= = ∏ .                        (16) 
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2

( ) ~ ( ,  )U
UL N y

n
σµ ,  

1

1 n

i
i

y y
n =

= ∑ .                      (17)  

4.2.2 Survivor data 

For survivor data, the likelihood is given in the form of cumulative distribution function 

 2

1 1 1
(E | ) ( ) ( 0) =  = ( , , )

n n n
i

i U i U
i i iU

y
L L P Y y R y

µµ µ µ σ
σ= = =

 −
= = − > Φ − 

 
∏ ∏ ∏ ,        (18) 

where 2( , , )U i UR y µ σ  is the complementary cumulative density function of μ.  

4.3 Posterior function of μ 

4.3.1 Failure data 

" ' 2 '

1
( ) ( ) ( ) ( , ) ( )

n

U U U i U U
i

f k L f f y fµ µ µ σ µ
=

= ⋅ ⋅ = ⋅∏ ,                   (19) 
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where k = [f L(,u) • f t, (,u) OF' is the normalizing constant. It can be shown that f t; (,u) is also 

normal, with posterior mean and posterior standard deviation given, respectively, as 

  Py 
„ (n I cr,,) 1 I  ny + day

du = 

4.3.2 Survivor data 

1  1 n +1 
(c / n) 

of . I n) cru 
cr, 2 (0 n) n+1 

1
f,;(P)= k LCLI)* .4,(1.1) = k '11Ru(Y„II,cr[2 )* .4,(1.1) 

i=1 

where k = [f L(u)• f t, (,u) diurl is the normalizing constant that can be solved only numerically 

for evidence of survivor data. 

4.4 Posterior function of Y 

(20) 

Since the interest is to update Y given evidence E, posterior Y need to be evaluated by 

f;(y)= fy (y I E) = fy (y I P) • f,;(p) du , (21) 

where fy (y I ,u) Ny (p, o-,). For failure data, fU (,u) NU (p" , 6U) can be expressed analytically. 
It can be derived from equation (21) that the posterior Y is given as 

f;(y)= exp
[ 1  y mti" )2 

1 (22) 
+ 2 Vcr2R + o-j 

However, for survivor data, f u" (p) can only be given numerically. Posterior Y needs to be 
determined numerically using equations (20) and (21). 

5. Numerical example 

Equipments for nuclear installations are relatively stiff, and often have substantial margin 
against the prescribed seismic design criteria. Equipment fragilities are usually conservatively 
estimated. Through Bayesian updating, empirical acceleration capacities of equipments, 
recorded from either earthquake experience or shaking table tests, can be applied to obtain a 
balanced, informed, thus more convincing fragility analysis for safety-related equipment. 

5.1 Example 1 using assumed data 

As an initial estimation, the fragility parameters of an equipment item are given as: median 
acceleration capacity X„, =1.75g, uncertainty fl,= 0.26, and flu = 0.27. 

1. Failure data: in a shaking table test, 3 identical equipments were recorded to fail 
respectively at acceleration levels xi=2.8g, x2=3.0g, x3=3.1g. Using Bayesian updating 
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Equipments for nuclear installations are relatively stiff, and often have substantial margin 
against the prescribed seismic design criteria. Equipment fragilities are usually conservatively 
estimated. Through Bayesian updating, empirical acceleration capacities of equipments, 
recorded from either earthquake experience or shaking table tests, can be applied to obtain a 
balanced, informed, thus more convincing fragility analysis for safety-related equipment.  

5.1 Example 1 using assumed data  

As an initial estimation, the fragility parameters of an equipment item are given as: median 
acceleration capacity Xm =1.75g, uncertainty Rβ = 0.26, and Uβ = 0.27.  

1. Failure data: in a shaking table test, 3 identical equipments were recorded to fail 
respectively at acceleration levels x1=2.8g, x2=3.0g, x3=3.1g. Using Bayesian updating 
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process given in Section 4, the prior and posterior Y and fragility curves plotted against 
ln(X) are shown in Figure 2, where X denotes the shaking acceleration level. 
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Figure 2: Prior and posterior Y and fragility curves for failure evidence 
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2. Survivor data: in a shaking table test, 3 identical equipments were recorded to withstand 
xi=2.8g, x2=3.0g, x3=3.1g (identical with the above) without failure. Using Bayesian 
updating process, the prior and posterior Y and fragility curves plotted against ln(X) are 
shown in Figure 3. 
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Figure 3: Prior and posterior Y and fragility curves for survivor evidence 

Observed in Figures 2 and 3 are that the posterior probability density functions of Y, f,; (y) , 
differ significantly from the prior, and the fragility curves, i.e., the cumulative density 
functions of Y, change substantially. 

In seismic margin assessment, the HCLPF capacity needs to be calculated according to 
equation (13) or (14), and is required to be greater than the Review Level Earthquake (RLE) 
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ground motion, typically defined as PGA = 0.3g with a reference spectrum shape given by 
NUREG/CR-0098. Failure probability of the equipment under shaking table test is evaluated 
for the RLE ground motion, in which the peak response spectrum value equal to 0.65g from 
the reference spectrum should be used instead of PGA. Given in Table 1 are the prior and 
posterior parameters for evidence of both failures and survivors. 

Table 1: HCLPF capacity and failure probability for RLE 

prior 
X„ 7 Pc HCLPF pr,RLE 

1.75 g 0.375 0.73 g 0.0041 

Evidence of 3 failures for x = 2.8 g, 3.0 g, 3.1 g 

posterior 
X„ , Pc HCLPF pr,RLE 

2.60g 0.293 1.31g 1.1x10-6
Evidence of 3 survivors for x = 2.8 g, 3.0 g, 3.1 g 

posterior 
X„ 7 A HCLPF PhRug 

3.13g 0.308 1.53g 1.6x107

It is seen that all parameters are updated substantially. X„, and HCLPF are increased, while fic
and pr,. are decreased. Notice should be given that the lower probability portion (fragility tail 
part) is very sensitive to the estimated fragility parameters, based on which the estimated 
HCLPF capacity can be quite different. 

5.2 Example 2 using earthquake experience data 

Diesel generator is one of the dominant risk contributors for NPPs and one of the governing 
components for plant level HCLPF capacity. An example generator is shown in Figure 4. 

' 

Figure 4: Example diesel generator in NPP 

Earthquake experience data for standby generators at a number of industrial sites subjected to 
strong ground motions are selected from the well-maintained earthquake experience database 
sponsored by the Seismic Qualification Utility Group (SQUG) and the Electric Power 
Research Institute (EPRI). The selected data given in Appendix A was summarized by Swan 
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[12], grouped according to Modified Mercalli Intensity (MMI) scale, and is confined to only 
MMI VIII (roughly 0.34-0.65g PGA, representing strong ground motion) and MMI VIII+ 
(roughly 0.50-0.95g PGA, representing severe ground motion). After eliminating failures due 
to factors other than seismic capacity of the diesel generators such as the ground base 
settlement, damage to connections, and failures due to components not mounted on the 
generators, yields a total of 2 failures out of 65 diesel or gas generators. 

Based on the assessment result of Zion plant, for typical diesel generators it is estimated that X„, 
= l.lg, flit= 0.26, flu = 0.27 (thus A = 0.375). Using Bayesian updating process, where the 
likelihood function should be determined using equations (16) and (18) together, the prior and 
posterior Y and fragility are shown in Figures 5 and 6. In Figure 5, evidence of only 2/6 (two 
out of six) failures at Southern California Edison Headqauaters in 1987 Whittier earthquake is 
used only, featuring plant-specific characteristics of diesel generators, such as ages and 
specifications. From Table 2, it is observed that compared to moderate decrease of uncertainty 
ftc, significant reduction is induced for median capacity X„, from 1.1g to 0.62g, and HCLPF 
from 0.46g to 0.31g. Failure probability for RLE p is increased significantly to 0.0067 
(RLE here is the PGA= 0.3g). 

Probability distribution of Y 
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Figure 5: Prior and posterior Y and fragility curves for evidence of 2/6 failures at 
Southern California Edison Headqauaters in 1987 Whittier earthquake only 

0.5 1.5 2 

The posterior based on the plant-specific 2/6 failure data may not be generally applicable for 
other plants, which is a practical concern. Thus evidence of 2/65 failures from the entire 
selected data set is used for Bayesian updating. Its results are given in Figure 6 and Table 2. 
The posterior Y and fragility curve are not significantly different from the prior. X„, decreases 
slightly from l.lg to 0.98g. The combined effect of decrease in X„, and A is to increase the 
fragility or risk in a wide PGA range (i.e., In PGA = 0.7-1.0 g). However, the decrease in k 
greatly influences the tail of fragility curve, giving an increase in HCLPF from 0.46g to 0.52g, 
i.e., the posterior shows a greater seismic margin. This contradiction implies that fragility 
analysis method and seismic margin analysis method sometimes do not support each other. 
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Table 2: HCLPF capacity and failure probability for RLE 

prior 
X„, ftc HCLPF P f ,Ris 

1.1 g 0.375 0.46g 2.6x10-4
Evidence of 2/6 failure data 

posterior 
X„, fic HCLPF P f ,Ris 

0.62 g 0.293 0.31 g 0.0067 
Evidence of 2/65 failure data 

posterior 
X„, fic HCLPF P f ,Ris 

0.98g 0.272 0.52g 6.9x10-6

6. Conclusions and discussions 

Safety-related equipments for nuclear installations are supposed to be seismically robust. 
However, their seismic capacities and fragilities are often conservatively estimated. Actual 
seismic capacities of these equipments need to be better evaluated, because they 
fundamentally influence the plant-level risk. A Bayesian formulation of seismic fragility 
analysis of safety-related equipment is developed, which incorporates empirical capacity 
evidence acquired from either earthquake experience or shaking table tests. Numerical results 
show that the prior distribution of capacity and fragility curve can be substantially updated 
using the Bayesian formulation. 

It is also noticed that both the type of evidence (i.e., failures or survivors) and the size of 
selected data will influence the posterior. To give a reasonable and convincing updating, the 
evidence needs to be selected carefully and properly, which deserves further study. 
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2013 June 9 — June 12 

Inventory of Diesel and Gas Turbine Generators from the SQUG/EPRI Database 

Earthquake Site 
Duration 

(sec) 
PGA 
(g) 

'WM! 
Portion of 

Generators 
Failed 

2011 Japan Onagawa Nuclear Plant 90 0.68 VIII+ 0/8 

1985 Chilean Llolleo Water Treatment 
Plant 

40 0.75 VIII+ 0/1 

1994 Northridge 
Olive View Hospital 
Cogeneration Plant 

10 0.73 VIII+ 0/4 

Great Western Data Center 10 0.50 VIII+ 0/3 

1983 Coalinga 
Union Oil Propane/Butane 

Refinery 
10 0.62 VIII+ 0/18 

1986 Palm 
Springs 

Devers Substation 5 0.81 VIII 0/1 

1994 Northridge 

Placerita Cogeneration 
Plant 

10 0.59 VIII 0/2 

Arco Cogeneration Plant 10 0.60 VIII 0/2 
Pitchess Cogeneration 

Plant 
10 0.50 VIII 0/1 

1992 Mendocino 
Pacific Lumber 

Cogeneration Plant 10 0.46 VIII 0/1 

Centerville Naval Station 10 0.40 VIII 0/2 

1989 Loma Prieta 

UC Santa Cruz Campus 10 0.43 VIII 0/5 
Santa Cruz Water 
Treatment Plant 

10 0.43 VIII 0/1 

Santa Cruz Telecom 
Central Office 

10 0.43 VIII 0/1 

Watsonville Telecom 
Central Office 

10 0.40 VIII 0/1 

Watsonville Water 
Treatment Plant 

10 0.40 VIII 0/2 

National Refractory Brick 
Plant 

10 0.30 VIII 0/2 

1987 Whittier 

Southern California 
Edison Headquarters 

5 0.42 VIII 2/6 

California Federal Data 
Center 5 0.40 VIII 0/4 
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Appendix A: 

Inventory of Diesel and Gas Turbine Generators from the SQUG/EPRI Database 

Earthquake Site 
Duration  PGA 

(g) MMI 
Portion of  

(sec) Generators 
Failed 

2011 Japan Onagawa Nuclear Plant 90 0.68 VIII+ 0/8 

1985 Chilean Llolleo Water Treatment 
Plant 40 0.75 VIII+ 0/1 

1994 Northridge 
Olive View Hospital 
Cogeneration Plant 10 0.73 VIII+ 0/4 

Great Western Data Center 10 0.50 VIII+ 0/3 

1983 Coalinga Union Oil Propane/Butane 
Refinery 10 0.62 VIII+ 0/18 

1986 Palm 
Springs Devers Substation 5 0.81 VIII 0/1 

1994 Northridge 

Placerita Cogeneration 
Plant 10 0.59 VIII 0/2 

Arco Cogeneration Plant 10 0.60 VIII 0/2 
Pitchess Cogeneration 

Plant 10 0.50 VIII 0/1 

1992 Mendocino 
Pacific Lumber 

Cogeneration Plant 10 0.46 VIII 0/1 

Centerville Naval Station 10 0.40 VIII 0/2 

1989 Loma Prieta 

UC Santa Cruz Campus 10 0.43 VIII 0/5 
Santa Cruz Water 
Treatment Plant 10 0.43 VIII 0/1 

Santa Cruz Telecom 
Central Office 10 0.43 VIII 0/1 

Watsonville Telecom 
Central Office 10 0.40 VIII 0/1 

Watsonville Water 
Treatment Plant 10 0.40 VIII 0/2 

National Refractory Brick 
Plant 10 0.30 VIII 0/2 

1987 Whittier 

Southern California 
Edison Headquarters 5 0.42 VIII 2/6 

California Federal Data 
Center 5 0.40 VIII 0/4 
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