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Abstract 

An accurate fault modeling and troubleshooting methodology is required to aid in making risk-
informed decisions related to design and operational activities of current and future generation of 
CANDU® designs. This paper presents fault modeling approach using Fault Semantic Network (FSN) 
methodology with risk estimation. Its application is demonstrated using a case study of Bruce B zone-
control level oscillations. 

1. Fault Semantic Network Methodology 

1.1 Introduction to Fault Semantic Network (FSN) Methodology 

In this study, a case of zone-control level oscillations at Bruce B will be used to demonstrate the 
proposed FSN approach. Development and application of a flexible fault knowledge structure in 
qualitative manner is validated using historical plant data. 

1.2 Plant Object Oriented Model (POOM) 

This study proposes to use Plant Object Oriented Modelling (POOM) methodology developed by 
Gabbar et al [1], [2]. A POOM-based plant model is represented as building blocks of static model 
elements; each is associated with operation and behaviours where all related process variables are 
classified based on their function as manipulated, control or measured variables. A high-level example 
of POOM model where various plant Process Variables (PVs) is shown for a typical CANDU® reactor 
below in Figure 1. 
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Figure 1. Process Variable (PV) interactions in Liquid Zone, Main Moderator Circuit and 
neutron detector systems are mapped and classified using POOM approach. 

As shown above, there are many variables related to the plat operation, e.g. neutron detector current is 
a function of neutron flux, which in turn is a function of the current reactor power, moderator 
temperature, level, average and individual Liquid zone levels, etc. All process variables (PVs) 
identified in the POOM model are tabulated in one knowledge base. A portion of this structure is 
shown below along with the corresponding measurement instances. 

Moderator Calandria Power Liquid Zone Level SDS1 NOP RRS NOP 

Temp Level PUMP 1/2 Temp Level 

Inlet 
Pressur 

e 
RRS 
PLIN AZL Zone 6 Zone 8 Zone 6 Zone 8 Zone 6 Zone 8 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 
61.4652 8770.83 44.2737 34.4238 8786.71 211.985 0.92821 31.5078 23.1104 30.7178 105.919 104.484 91.8321 91.7043 
61.4595 8771.17 44.2737 34.4238 8783.75 211.035 0.92821 32.0286 23.466 30.8106 105.977 104.639 91.8493 91.8619 
61.4538 8771.5 44.2736 34.4238 8781.57 208.922 0.92821 32.0894 23.3114 30.2501 106.024 104.639 91.8664 91.7581 
61.4481 8771.83 44.2736 34.4238 8780.78 210.037 0.92821 32.0926 22.805 29.62 105.962 104.508 91.8836 92.0426 
61.4423 8772.17 44.2735 34.4238 8784.1 206.912 0.92821 32.1953 23.006 30.1496 106.022 104.402 91.9008 92.0426 
61.4366 8772.5 44.2735 34.4238 8784.43 210.373 0.92821 31.9414 22.1633 30.8299 107.016 104.296 91.9065 92.1888 
61.4309 8771.98 44.2734 34.4238 8789.59 212.127 0.92821 31.9609 23.0601 31.4909 106.566 104.19 91.9093 91.9427 
61.4238 8771.47 44.2734 34.4238 8782.84 207.073 0.92821 31.9822 22.1942 30.8724 106.421 104.089 91.9121 91.9619 
61.4132 8770.95 44.2734 34.4238 8784.38 209.779 0.92821 32.0107 22.2252 31.0348 106.578 103.998 91.9149 92.208 
61.4026 8770.43 44.2733 34.4238 8790.24 212.42 0.92821 32.0391 22.5112 31.2899 107.167 104.597 91.9441 92.5464 
61.3921 8769.91 44.2733 34.4238 8786.15 207.288 0.92821 32.4922 22.6929 32.4573 107.939 104.802 91.9846 92.3003 
61.3815 8769.4 44.2732 34.4238 8786.93 207.501 0.92821 32.2266 23.6979 32.7936 107.45 104.736 92.0251 92.0619 
61.371 8768.88 44.2732 34.4238 8784.28 207.284 0.92821 32.2976 23.4042 31.978 106.707 104.267 92.0657 91.6504 

61.3604 8768.36 44.2731 34.4238 8784.2 207.067 0.92821 32.1058 23.841 31.0851 106.555 104.295 92.1062 91.8696 
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Table 1. Portion of PV Data set where 14 variables are shown with their corresponding ID tags, e.g. 
moderator temperature — X1, moderator level — X2, etc. 

1.3 Fault, Failure, Hazard and Accident Classification 

Faults can be caused by a variety of reasons starting with design deficiencies, ingress of moisture and 
corrosion due to assembly structure failure or inadequate or incorrect maintenance strategy. A sample 
fault to accident propagation scenario is shown below for a generalized neutron detection system. 
Ingress of moisture into the detector assembly may occur due to manufacturing defect, incorrect 
handling, storage or maintenance. This may lead to detector corrosion and connector or cable faults 
resulting in misleading readings. For extreme cases, faulty performance may lead to reduction or loss 
of coverage which, in turn, may lead to overheating of fuel in that particular zone. 

Selection of methods for fault detection depends on the nature of the root cause, e.g. calibration drifts 
are detected by monitoring equipment while degradation of the detector itself is identified during 
functional testing. Next, rules are created and associated with each transition of the causation model 
within FSN. For example, failures related to corrosion might be associated with rules such as follows: 

IF (Structure.Material = (X or Y)) 

and (PV= Gas.Pressure) 
and (Dev = Very-Low) 

THEN (FM = Failure.detector) 

These rules are initially defined in generic form based on domain knowledge, i.e. regardless of plant 
specific knowledge, and then further explained for the specific case. Formal language is proposed to 
represent process domain knowledge and safety control rules, as explained in [3], [4] in order to facilitate 
synthesis and validation of fault models within FSN. 
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Figure 2. Fault Semantic Network shown for the selected case study [4]. 
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Risk element is identified for each fault propagation scenario from the initiating events or root causes 
to the final consequences. For the example in Figure 3, there are three possible risk elements associated 
with consequence-1, namely: 

[a] cause-1, failure-1, consequence-1; 
[b] cause-2, failure-1, consequence-1; 
[c] cause-3, failure-1, consequence-1. 

where: 
CaFrl is causal factor used to define the frequency of cause-1. 
FPr1 is the probability that failure-1 will occur due to any cause. 
CoPrl is the probability that consequence-1 will occur due to any cause & failure 
Co/m/ is the total impact of consequence-1. 

For independent events, total risk associated with consequence-1 is shown as: 

R(Consequence-1) = [(CaFrl + CaFr2 + CaFr3) * FPr1 * CoPrl] * CoIml (1) 

Total risk of consequence-2 and consequence-3 can be computed in a similar way. For case when 
events are co-dependent, Bayesian theorem can be applied to determine the total risk based on 
dependencies for cause-1, cause-2, and cause-3. 

1.4 Implementation of FSN 

Proposed FSN is comprised of two layers for static off-line and dynamic on-line modes. Static FSN 
includes faults, failures, hazards and accidents structured and linked in the form of causation models 
associated with process equipment. Dynamic FSN is constructed using dynamic simulated or real time 
data that can be obtained from operation, maintenance, safety, and control. Real time data are gathered 
for the selected case study and analysed in Matlab. CAPE-ModE [2] is developed within MS Visio to 
capture and structure process design models for Process Block Diagrams (PBD), Process Flow 
Diagram (PFD), and Piping and Instrumentation Diagram (P&ID), based on ISA-S95/88 [5]. ISA-S95 
is an international standard for integration of enterprise, i.e. process, and control systems. It is widely 
used for standardization of a software layer used for information exchange, specification of user 
requirements, and functional requirements. Likewise, ISA-88 is a common standard for terminology 
and models used for batch control systems. Its main objective is to provide a hierarchical and modular 
categorization for the devices that carry out the process. ISA-88 defines physical model, which 
structures the plant hierarchically from the highest to the lowest level, e.g. Enterprise, Site, Area, 
Process cell, Unit, Equipment Module and Control module and is focused on the level of the Process 
Cell and the lower levels while ISA-95 is focused on the boundary between the Area and the Site. 
Thus, combination of these two standards forms the basis for managing the production process and 
ensures standardization within batch process automation. 
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Figure 3. Proposed System Architecture for Failure, Fault, Hazard, and Accident Data Acquisition 

Fault Diagnostic System (FDS) is developed to construct fault models using qualitative — quantitative, 
and deterministic and probabilistic techniques [6]. Fault modeling engine is developed within Matlab 
where fault propagation, equipment reliability, and material degradation are calculated and used to 
reconstruct and maintain fault/failure propagation models. 

1.5 Knowledge Base Modelling 

Based on POOM model of the detector system and surrounding process equipment shown in Figure 1, 
plant structure, behaviour, operation, control, and functional views/relations are defined in hierarchical 
manner [6]. Failure data from the selected case study are collected in excel file which includes two major 
sheets: header and details. Failures can be either of mechanical, electrical, or material nature. For 
example, corrosion of a detector is a mechanical failure due to failure of structural integrity of a 
detector assembly. Noise induction due to adjacent electrical equipment (e.g. moderator pumps) 
constitutes an electrical failure. An example of a material failure is ingress of moisture into the detector 
assembly causing contamination of the detector lead wire. Human failure or fault could also be 
represented in a similar way. Incorrect execution of a calibration procedure is a human error (or 
failure), the underlying cause of which could be lack of training or high level of fatigue due to work 
load or stress. 

First a selected set of equipment classes is identified along with their parent class, for example 
"Detectors" and "Sensors" Each class has its associated identifier (ID) and description. Equipment 
class is related to function, component, and process variables. Failure and faults are represented at a 
generic and equipment specific levels. Failure Mode Identification (FM-ID) is used to represent both 
faults and failures. Resulting hazard and accidents are modeled in header and details entities and are 
linked with "Lessons Learned" and barriers, or controls, available at each step in the causation mode. 
These barriers could be used for prevention, detection or mitigation purposes and could comprise 
engineering, administrative, or operational activities. 
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Figure 4. Data Acquisition Process Framework is shown. 

2. Application of FSN for a Selected Case Study 

2.1 Case Study — Bruce B Zone-Control Level Oscillations 

A case of Bruce B zone-control level oscillations was selected for this study. Plant data for Unit-5 was 
reviewed dating back to 2008. A period of one hour on 20 February 2008, shown below, was selected 
for analysis. 
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Figure 5. Bruce B Unit-5 data trend is shown below. Liquid Zone 6 and Zone 8 is shown in red and 
green, corresponding detector signals in those zones are shown in yellow and blue. 

Detector responses for Zone 6 and Zone 8 are plotted in yellow and blue, with the onset of oscillations 
noticeable at approximately 00:30 and becoming particularly pronounced after 00:45 hours. Zone 
response is plotted in green and red and is noticeably following the same trend. 
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Figure 4. Data Acquisition Process Framework is shown. 

 

2. Application of FSN for a Selected Case Study 

2.1 Case Study – Bruce B Zone-Control Level Oscillations 

A case of Bruce B zone-control level oscillations was selected for this study. Plant data for Unit-5 was 
reviewed dating back to 2008.  A period of one hour on 20 February 2008, shown below, was selected 
for analysis.  

 
 

Figure 5. Bruce B Unit-5 data trend is shown below. Liquid Zone 6 and Zone 8 is shown in red and 
green, corresponding detector signals in those zones are shown in yellow and blue. 

 
Detector responses for Zone 6 and Zone 8 are plotted in yellow and blue, with the onset of oscillations 
noticeable at approximately 00:30 and becoming particularly pronounced after 00:45 hours. Zone 
response is plotted in green and red and is noticeably following the same trend.  
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The root cause of this behaviour is unknown at this time. There are several potential causes that have 
been identified via analytical methods and engineering analysis. 

2.2 Multivariate Analysis Techniques — Principle Component Analysis (PCA) 

Due to the large number of parameters affecting the selected system performance, unravelling the 
relational pattern and connections among the data by analytical methods is challenging [7]. It is 
possible that more than one individual variable affects the selected detector behaviour at the same time, 
thus they should not be analysed independently. Traditional statistical data analysis methods focus on 
just one or two variables and are not suitable in this case. Multivariate Analysis (MVA) techniques 
appear to be a more preferred option. Two statistical methods, namely Primary Component Analysis 
(PCA) and weighted Principal Component Analysis are proposed for data extraction and pattern 
recognition in this case study. 

Primary Component Analysis (PCA) is one of the oldest and most versatile methods of MVA. 
Historically, the bulk of applications of multivariate techniques have been in the behavioural and 
biological sciences [8] [9], [10], and [11], but have also been used in other applications, e.g. 
pharmaceutical industry for tablet development and manufacturing [12]. It's been commonly used in 
other industries, e,g, chemical, process, wastewater treatment, for dimensionality reduction for 
detecting and diagnosing faults [13]. 

A key application of PCA is to reduce the dimensionality of the problem in order to identify a potential 
root cause [8]. PCA algorithm decomposes a data table with correlated measurements into a new set of 
uncorrelated (i.e., orthogonal) variables, which are called primary components. Each unit is assigned a 
set of scores which show the magnitude of its effect on the rest of the components. 

2.3 Application of PCA algorithm for Data Extraction and Pattern Recognition 

For the first iteration of PCA algorithm 104 channelized measurements were obtained at 2 second 
sampling frequency resulting in 104x2200 dataset, which was converted into 104x104 principal 
component space as shown below in Figure 6 (a). This identified a challenge with traditional PCA 
analysis as it proved difficult to determine which specific component has the most weight. 
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Figure 6. 104x104 principal component space after first PCA rendition of the sample dataset. 

Since all principal components (PCs) are supposed to be orthogonal to each other, there should be no 
need for redundant information. Therefore, in order to address the challenge of representation all 
channelized measurements were removed from the historical sample of data. The time interval was 
shortened to 1 hour and the sample frequency was increased to 10 second. A second iteration of PCA 
algorithm was conducted on the modified dataset with results shown in Figure 6 (b). 

A principal component calculated by PCA algorithm is a single axis in space. The second and the third 
principal components are other axis in space, perpendicular to the first. All the principal components, 
as a whole, form an orthogonal basis for the space of the data. Each of the instances of PV 
measurements is represented by a red point, and their locations indicate the score of each measurement 
for the two factors. The points are scaled to fit within the unit square, so only their relative locations 
can be determined from the plot. Process Variables are represented in this plot by blue vectors, and the 
direction and length indicate how each variable depends on the underlying factors. PCA algorithm 
identified process variables X2 and X6 corresponding to moderator temperature and inlet pressure, as 
having the most effect. 

2.4 Weighted Principal Component Analysis — Improving Robustness 

While PCA algorithm shows promising results, it is known to be less than optimal for large sets of data 
where data clusters and outliers are not identified in advance or their existence is unknown. A recently 
proposed generalization of PCA based on Weighted PCA (wPCA) increases robustness by assigning 
different weights to data objects based on their estimated relevancy [14]. The same general approach is 
used as in the PCA method; however the data is standardized by assigning weights to the mean and the 
outer products which form the covariance matrix. This puts a weight on every point in the training data 
and makes identification of extreme points easy in a large sample set. wPCA was performed on the 
selected data set by using the inverse variances of the ratings as weights, and scores for each principal 
component were calculated by transforming the original data into the space of the principal 
components. 
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Figure 6. 104x104 principal component space after first PCA rendition of the sample dataset. 
 
Since all principal components (PCs) are supposed to be orthogonal to each other, there should be no 
need for redundant information. Therefore, in order to address the challenge of representation all 
channelized measurements were removed from the historical sample of data. The time interval was 
shortened to 1 hour and the sample frequency was increased to 10 second. A second iteration of PCA 
algorithm was conducted on the modified dataset with results shown in Figure 6 (b).  
 
A principal component calculated by PCA algorithm is a single axis in space. The second and the third 
principal components are other axis in space, perpendicular to the first. All the principal components, 
as a whole, form an orthogonal basis for the space of the data. Each of the instances of PV 
measurements is represented by a red point, and their locations indicate the score of each measurement 
for the two factors. The points are scaled to fit within the unit square, so only their relative locations 
can be determined from the plot. Process Variables are represented in this plot by blue vectors, and the 
direction and length indicate how each variable depends on the underlying factors. PCA algorithm 
identified process variables X2 and X6 corresponding to moderator temperature and inlet pressure, as 
having the most effect.  

2.4 Weighted Principal Component Analysis – Improving Robustness 

While PCA algorithm shows promising results, it is known to be less than optimal for large sets of data 
where data clusters and outliers are not identified in advance or their existence is unknown. A recently 
proposed generalization of PCA based on Weighted PCA (wPCA) increases robustness by assigning 
different weights to data objects based on their estimated relevancy [14]. The same general approach is 
used as in the PCA method; however the data is standardized by assigning weights to the mean and the 
outer products which form the covariance matrix. This puts a weight on every point in the training data 
and makes identification of extreme points easy in a large sample set. wPCA was performed on the 
selected data set by using the inverse variances of the ratings as weights, and scores for each principal 
component were calculated by transforming the original data into the space of the principal 
components.  
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Figure 7. Principal component space (a) and Weighted PCA results (b). 

wPCA algorithm identified X3, X4, X8 and X9 vectors corresponding to moderator Pump 
Bearing Temperature for Pumpl and Pump 2 respectively. X8 corresponds to the average Liquid Zone 
level (AZL) measurement and X9 to Zone 6 level. 

3. Discussion of Results and Conclusions 

PCA method was used for 104x104 parameter matrix where each parameter had 2200 instances in 
order identify primary factors co-variant with zone-control level oscillations in the selected case study. 
A simple line segment plot, also called Pareto Scree plot, was created for the eigenvalues of a 
correlation matrix where the results are sorted in descending order of magnitude. This shows the 
fraction of total variance in the data as represented by each primary component. It can be noted that 
there is a large amount of variance is between the first and second components. It can also be noted 
that the first two principal components explain roughly two-thirds of the total variability in the 
obtained standardized ratings. 
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Figure 7. Principal component space (a) and Weighted PCA results (b). 

 
wPCA algorithm identified X3, X4, X8 and X9 vectors corresponding to moderator Pump 

Bearing Temperature for Pump1 and Pump 2 respectively. X8 corresponds to the average Liquid Zone 
level (AZL) measurement and X9 to Zone 6 level.   
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This is consistent with X2 and X6 factors, corresponding to moderator temperature and calandria inlet 
pressure, identified by PCA algorithm. To determine the percent variability explained by each principal 
component, Hotelling's T-square was calculated. Hotelling's T-square provides is a statistical measure 
of the multivariate distance of each observation from the center of the data set, which allows 
identification of the most extreme points in the data [15]. 

Although, the initial rendition of PCA algorithm showed promising results, it also highlighted 
challenges of representation traditionally associated with statistical methods. Often, as in this case, 
graphical representation of results may be difficult to understand and/or require significant effort to 
translate into a format suitable for human recipients. In order to address this challenge, PCA method 
was adjusted to use weighted coefficients (wPCA) to improve robustness of the algorithm and the 
analysis was repeated for the same set of data. This study determined four (4) variables with the most-
covariance, namely X3, X4, X8 and X9 corresponding to Pump Bearing Temperature for Pump 1 and 
2, Average Zone Level and Zone 6 level. 

Once these results were obtained, fault diagnosis and reconstruction of fault propagation scenario was 
conducted to validate the approach. First, the factors identified by weighted PCA algorithm were 
mapped with the plant Process Object Oriented model (POOM) as shown below. 
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Figure 9. Fault propagation scenario based on wPCA results. 

This shows that wPCA method identified fault initiating factors X3-X4, namely change in 
Moderator Pump bearing temperature, that lead to moderator temperature and/or calandria inlet 
pressure transient. This propagates into detector response and corresponding zone level oscillation. 
Engineering methods used for troubleshooting in the past showed that the oscillations occur 
simultaneously in Zone pairs 6/8 and 7/9 located on the North West (NE) side of the reactor. This is 
coincidental with the location of moderator Pump 2, shown in the POOM model of the plant. To 
prove this finding and validate wPCA results, zone-control level oscillations were plotted against 
the moderator pump bearing temperature data as shown below. 
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 This shows that wPCA method identified fault initiating factors X3-X4, namely change in 
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Engineering methods used for troubleshooting in the past showed that the oscillations occur 
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coincidental with the location of moderator Pump 2, shown in the POOM model of the plant. To 
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Figure 10. Bruce B NOP and Zone 6/8 oscillation plotted against moderator pump bearing temperature. 
Pump 1 shown in brown, Pump 2 shown in white. 

Activation of Pump 2 is indicated by the increase in the pump bearing temperature; while Pump 1 
temperature drop indicates that the pump was swapped out of duty. The onset of oscillations is 
coincidental with pump duty swap timestamp. The wPCA algorithm suggests that main moderator duty 
pump swap is intimately related to the cause of zone-control level oscillations in this case study. 
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