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Summary 

The theory of multipoint coupled reactors developed by multi-group transport is verified by 
using the probabilistic transport code MCNP5. The verification was performed by calculating 
the multiplication factors (or criticality factors) and coupling coefficients for a two-region test 
reactor known as Deuterium Critical Assembly, (DCA). The variations of the criticality factors 
and the coupling coefficients were investigated by changing of the water levels in the inner and 
outer cores. The numerical results of the model developed with MCNP5 code were validated 
and verified against published results and the mathematical model based on coupled reactor 
theory. 

1. Introduction 

Designing a multi-spectrum CANDU reactor as a possible actinide burner requires a numerical 
verification of the theory of coupled reactors with the use of neutron transport codes. The multi-
spectrum nuclear reactor consists of two or more distinct regions, which are operated in a 
coupled fashion. The term 'coupled' means that, in each of the regions, some of the fission 
neutrons are born in the other region. The current Deuterium Critical Assembly model [1] 
consists of a two-region reactor. The inner core is a fast region fuelled by 2.7 wt% U-235/U 
enriched uranium rods surrounded by light water. The outer core is the thermal region fuelled 
by 1.2 wt% U-235/U enriched uranium rods and moderated by heavy water. The internal region 
typically has a dominant fast neutron spectrum, while the external region has a dominant 
thermal one. Both regions would be independently subcritical on their own. The combination 
of the two regions is designed in such a way that the neutron leakage between them can provide 
sufficient reactivity to drive the combined system to criticality. The advantage of using the 
theory of coupled reactors consists in the fact that one can gain a better understanding in the 
multiplication factor for each region rather just for the whole system, which helps in improving 
the physical understanding of the detailed characteristics of the multiplying system used as an 
actinide burner. 

2. The Theory of the Coupled Reactor 

The theory of a coupled reactor was first pioneered by Avery [2], [3], and [4]. The theory was 
modified and extended by Komata [5], Kobayashi [6] and Nishihara [1] A brief mathematical 
formulation of the nodal equations of the coupled reactor system was derived by Kobayashi [6]. 
For this two point reactor model, one can obtain easily the criticality factor keff which is related 
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2. The Theory of the Coupled Reactor  

The theory of a coupled reactor was first pioneered by Avery [2], [3], and [4]. The theory was 
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to regional criticality factors k11 and k22, and the coupling coefficients k12 and k21 by Equation 
(1): 

1 r
keff = [kn. + k22 +1/(kii — k22)2 + 4k12 • kn] 

The criticality coefficients are defined by Allan [7] as 

Rf ,1— 2 
k12 = fp + 

r. .., X keff 
vif,i  ttf,2) 

RL2 
_i 

k21 = X k 
(R f,i-FR f,2) err'

(1) 

(2) 

(3) 

Where, 
RfA: is the fission rate in the inner region (fission cm-3 s-1), 
Rf,2: is the fission rate in the outer region (fission cm-3 s-1)), 
Rf,i_2 : is the fission rate in the inner region triggered by from neutrons born in the outer 

region (fission cm-3 s-1), 
Rf,2_1 : is the fission rate in the outer core triggered by from neutrons born in the inner region 
(fission cm-3 s-1); 
k11: is the average number of next generation fission neutrons in the inner fast region resulting 
from a single fission neutron born in the inner fast region, 
k22: is the average number of next generation fission neutrons in the outer thermal region 
resulting from a single fission neutron born in the outer thermal region, 
k21: is the average number of next generation fission neutrons in the outer thermal region 
resulting from a single fission neutron born in the inner fast region, and 
k12: is the average number of next generation fission neutrons in the inner fast region resulting 
from a single fission neutron born in the outer thermal region. 

3. The Research Approach 

In the present work, the probabilistic computer code MCNP5 (Monte Carlo N-Particle) [8] is 
used to simulate the DCA experiment. The nuclear data library used with MCNP5 is ENDF/B-
VI.5 which is the same library used by TWOTRAN [9] code in Nishihara's work [1] . The 
materials temperatures were set at room temperature at (293.6 K). The criticality factors keff, k11 
and k22 were computed with MCNP5 along with the coupling coefficients k12 and k21 from 
Equations (1) and (2). The coupling between the two DCA regions is validated by comparing 
keff calculated by Equations (1), (2) and (3) with that computed directly by MCNP5 and that 
computed by Nishihara [1] by using the TWOTRAN [9]code. 

3.1. Heavy Water Critical Assembly (DCA) 

The DCA has a cylindrical geometry shape with an outer radius of 150.25 cm. It consists of two 
reactor core regions. The inner and outer regions are separated by air gap of thickness 9.2 cm 
as shown in Figure 1. The inner region is loaded with 2.7 wt.% U-235/U enriched metallic 
uranium fuel rods in aluminum clad surrounded by light water coolant. The outer region is 
loaded with 1.2 wt.% U-235/U enriched uranium rods in aluminum clad surrounded by heavy 
water. The inner region consists of 140 fuel rods distributed within a square lattice with lattice 
pitch 1.9 cm. The middle cell of the inner region is an air tube of inner radius 1.5 cm and 
aluminum wall of thickness 0.2 cm. The inner core consists in an aluminum cylinder of inner 
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as shown in Figure 1. The inner region is loaded with 2.7 wt.% U-235/U enriched metallic 

uranium fuel rods in aluminum clad surrounded by light water coolant. The outer region is 

loaded with 1.2 wt.% U-235/U enriched uranium rods in aluminum clad surrounded by heavy 
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radius 16.8 and outer radius 17.5 cm. The inner radius of the outer core is 33.851 cm and the 
outer radius is 133.875 cm. The outer core is surrounded by two heavy water reflectors. The 
outer reflector thickness is 16.375 cm and the inner reflector thickness is 4.351 cm. In both 
cores the fuel rod diameter is 1.45 cm and its length is 200 cm. The fuel rods are cladded in 
aluminum tubes. More details and dimensions are shown in Figure 1(A). The inner region or 
the fast core is designated as Core 1 and the outer region or thermal core is referred to as Core 
2. 

3.2. Design and Simulation of the Two Regions DCA with Exact Dimensions and Optimal 
Components using MCNP5 

There are some data that were not included in the Nishihara's published work [1]. These 
unknown data values are used as degrees of freedom of the DCA optimization. These degrees 
of freedom are: 1) The number of fuel pins in the thermal region, 2) the lattice pitch of the 
thermal region and, 3) The thickness of aluminum clad of fuel in the whole DCA reactor. An 
MCNP5 model is created with the exact dimensions and structures with only these three 
degrees of freedom. The constraints used to optimize these values are: 1) the two regions should 
be subcritical on their own and, 2) the published values of criticality factors by Nishihara [1] 
when the water (LW and I-IW) in the two regions at are 100 cm high. The lattice pitch and 
number of fuel pins per lattice in the thermal region were optimised. The optimum values of the 
thermal lattice pitch is 9.66 cm and the number of fuel pins is 4 pins per lattice cell. The last 
degree of freedom (or the remaining unknown value) is the thickness of aluminum cladding. 
The aluminum cladding thickness was changed from 0.5 mm up to 1.5 mm. Then, the criticality 
factors keff, k11 and k22 were compared using the same values under the same conditions as 
Nishihara's results [1] as shown in Table (1). 

Table (1) Determination of the Optimum Value of the Aluminum Cladding Thickness 

Al-Clad 
thickness (cm) 

keff at 
F100-T100*

k22 at 
F100-T100*

k11 at 
F100-T100*

Reference data [1] not included 1.020 0.988 0.810 
Current calculations 0.1300 1.0234 0.9983 0.7424 

*F100-T100 = Light water level at 100 cm and Heavy water level at 100 cm 

The thermal core lattice was optimized to a 474 fuel clusters in a square lattice cells. The 
thermal lattice pitch is 9.66 cm. Each cluster has four fuel rods for total of 1896 fuel rod. The 
aluminum clad thickness of the fuel rod is optimized to 1.3 mm. This optimum values is the 
regarding to the closest values of criticality factors produced by Nishihara [1] as shown in 
Table (1). 
Figure 1 (A) and (B) show the vertical and horizontal cross sections of the DCA model for 
levels the heavy water and light water in the thermal and fast regions set at 100 cm. Figure 1 
(C) and (D) show close-up views of the lattice pitch of the thermal and fast cores respectively. 
Figure 1 (E) shows the fast core lattice. 

3.3. Methodology 

As the DCA model was optimized, the coupling theory was verified by driving the system to 
criticality. Different values of criticality factors keff, k11 and k22 and corresponding values of 
coefficients k12 and k21 were calculated by changing the level of heavy water in the thermal 
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region and setting the light water level at 100 cm in the fast region, and vice versa. The 
simulation steps can be summarized as follows: 
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1) The criticality factor k11 was calculated by setting the importance of neutrons in the thermal 
part at a zero value and calculating the keff of the system, which represents only the criticality 
coefficient k11 of the fast region. Similarly, the coefficient k22 was calculated by setting the 
importance of the neutrons in the fast region to a value of zero. 

1) The two regions of the DCA model were simulated, using the probabilistic code MCNP5, at 
different levels of heavy water and light water, and the criticality factors keff, k11 and k22 were 
calculated. The fission reaction rates Rf,i_2 and Rf,2_1 were calculated, therefore the coupling 
coefficients k12 and k21 could be found from Equations (2) and (3) respectively. 

2) The criticality factor k11 was calculated by setting the importance of neutrons in the thermal 
part at a zero value and calculating the keff of the system, which represents only the criticality 
factor k11 of the fast region. Similarly, the factor k22 was calculated by setting the importance of 
the neutrons in the fast region to a value of zero. 

3) Both k11, k22 were calculated for various the levels of water in the fast and thermal regions, 
respectively. 

4) By using the flagged cell tally CF4 in the MCNP5 [8] code, the neutron flux for three energy 
groups that diffuse from the thermal region to the fast region and vice versa could be calculated. 

5) The average cross sections were calculated for each neutron energy group (thermal, epithermal 
and fast) corresponding to energy ranges 10-11 eV to 0.625 eV, 0.625 eV to 0.1 MeV and 0.1 
MeV to 14 MeV respectively. The fission reaction rates R1_2 and R2_1 were also calculated 
consequently, the coupling coefficients k21 and k12 could be calculated from Equation (2) and 
(3) respectively. 

6) The criticality factors (multiplication factor) keff calculated from coupling Equation (1) were 
compared with the criticality factors (multiplication factor) keff that were calculated numerically 
by MCNP5 for the system as a whole for different levels of heavy and light water in the two 
regions. 

4. Results and Discussion 

The dependence of the criticality factors keff, k11 and k22 and coupling coefficients k12 and k21 
for different levels of heavy water in the thermal region, with the level of light water in the fast 
region set at 100 cm is shown in Figure 2 and Figure 3. The criticality factors keff, k11 and k22 
and coupling coefficients k12 and k21 at different levels of light water in the fast region with the 
level of heavy water in the thermal region set at 100 cm are shown in Figure 4 and Figure 5. 

1) In Figure 2, as the heavy water level increased in the thermal region, the criticality coefficients 
of this region k22 increased gradually. Consequently, the criticality factor k12 increased because 
more neutrons diffuse from the thermal region to the fast one resulting in more fission 
interactions. There is a small increase in the criticality coefficient k21 due to an increase in the 
fission rate in the fast core as there are a small number of neutrons diffusing from the fast to the 
thermal region. All of these values affect the total values of keff at each heavy water level. The 
value of k11 is not changed because it is calculated independently at a fixed level of light water 
in the thermal core. 

2) Figure 3 represents the detailed behaviour of the change of the criticality factors keff from the 
MCNP5 calculations, the coupling equation calculations and those calculated by Nishihara [1] 
using the TWOTRAN [9] code as the heavy water level increases from 0 to 200 cm. One can 
find very good agreement between the keff value calculated directly by MCNP5 and that 
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calculated from coupling theory. The overall percentage difference between these results is 
1.6%. Therefore; the coupling theory could be verified with the MCNP5 code. 

3) From Figure 4, as the light water level is increased in the fast region, the criticality factor of this 
region, k11 increases sharply until the light water level is around 25 cm. Then, it increased 
gradually until the light water level comes to 100 cm. This is because of the effect of the light 
water moderation in the fast core. But, as the level of light water increases, the rate of neutron 
absorption also increases and gives the result of a flattening of the criticality factor k11 to 
become similar to the value of the fast core when it works independently. 

ou 

▪ 1 

0.8 
"cf 
g .F)., ▪ 0.6 

o 
▪ 0.4 
o 

4-1 U 
• 0.2 
"8-' c.) 

C11 

Criticality Factors and Coupling Coefficients at Different Heavy Water Levels 
with Light Water Level at 100 cm 

1.2 —•—keff MCNP5 

0 1 I I 

0 50 100 150 200 250 

Heavy water level in the thermal core (cm) 

—N—keff Coupling 
kEquation 

--k22 

—w—keff Nishihara 
Results 

—0—k12 

t k21 

Figure 2: Criticality Factor and Coupling Coefficients at Different Heavy Water Levels in the 
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4) The criticality factor k21 increases by very small values due to more diffusion from the fast 
region to the thermal region where there is a minor increase of the fission neutrons sources in 
the thermal region. The values of keff are not affected as much as for the change of the light 
water level in the fast core due to the volume and amount of fuel in the thermal region, which 
are much higher than those of the fast region. 

5) The contribution of the thermal region to the values of keff is more important than that of the 
fast one due to its larger volume and the amount of fuel in the thermal region in addition to the 
contribution of the heavy water moderation and reflectors in the thermal fission. 

6) There is an excellent agreement between the values of keff as calculated by MCNP5 directly and 
those calculated by Nishihara [1] using the TWOTRAN code [9] when the level of heavy water 
is fixed at 100 cm in the thermal region, while changing the level of light water in the fast 
region as shown in Figure 5. The percentage difference is about 2.7%. 
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100 cm and above with percentage difference 1.2%. But, when the heavy water level was 
changed between 0 and 100 cm, a reasonable agreement with a percentage difference of 8% 
was obtained. For both cases the average percentage difference is 4.6%. 

8) The values of keff calculated directly have an excellent agreement with those calculated from the 
coupling Equation (1). The minor difference in the results from the MCNP5 code and those 
calculated by Nishihara [1] may due to: (a) Using a three energy group in the present work 
rather than 4 energy groups as in the Nishihara's work [1], (b) Using a different cross section 
library, and (c) inaccuracy of the TWOTRAN code [9] at this energy range for fast reactor 
criticality calculations. 

5. Conclusion 

The criticality factors calculated by the coupling coefficients and regional criticality factors 
using the coupled reactor theory agree well with those obtained directly from the MCNP5 based 
model. There is a very good agreement between the result obtained numerically from the 
MCNP5 Code and those from the TWOTRAN code. Therefore, it is numerically confirmed that 
the coupling coefficients can be calculated with sufficient accuracy. Thus, the validity of the 
coupled reactor theory has been verified. The coupled reactor theory using the MCNP5 
transport code could be applicable for designing a multipoint or multi-spectrum CANDU 
reactor. 

6. Future Work 

From here, the work is presently in progress aiming to expand the coupled reactor theory as 
applicable to two, three or greater region reactor and applying this theory to a multi-spectrum 
reactor based on CANDU reactor design for the design of an actinide burner reactor. 
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