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Summary 

Inconel 600 pipes welded to Carbon-Steel are used in CANDU nuclear reactors. Fracture of these 
welded pipes has important consequences in term of safety, and therefore their mechanical properties 
need to be better understood. In this study, the weld region was analyzed at various length-scales using 
optical microscopy, micro hardness testing, small and large scale tensile testing, and Digital Image 
Correlation (DIC). Micro-hardness profiles showed variations across the weld and through thickness 
and were justified in terms of residual stresses. Local stress-strain curves were built using DIC and 
showed good agreement with stress-strain curves obtained from miniature tensile samples. 

1. Introduction 

A dissimilar metal weld (DMW) is a weld used to connect two different metals. In nuclear power 
plants, these welds are often used to connect Stainless Steel or superalloys such as Inconel to low 
alloys steels. Failure of these DMW could lead to costly reactor shut down (for repair) and release of 
radioactive heavy water. Various experimental techniques have been used to characterize dissimilar 
metal welds and to understand their deformation and fracture properties. The most widely used 
technique is the tensile test, which provides information on where the weld would fail upon straining 
[1, 2]. However DMWs show spatial variation due to the welding process. Therefore, it has been 
recognized that macroscopic testing of DMW is not sufficient to capture details of the deformation and 
fracture processes. Another widely used method to characterize welds is the hardness test, which 
provides the advantage of revealing local properties. A pattern of indents can be placed on the sample 
surface to obtain a map of the local strengths as shown in Figure 1 [1, 3, 4, 5, 6, 7]. This technique is 
very useful and inexpensive but lacks information compared to the typical tensile test. A hardness test 
only provides the hardness value at a point (which can be related to the strength of the material at that 
point) while a tensile test can provide the whole stress vs. strain curve of the material. To overcome 
this problem, miniature tensile samples have been extracted from various locations in the weld region 
and have been tested in tension. The result is a full stress strain curve from a local region in the sample 
[2, 5, 8]. The drawback of this technique is the difficulty in extracting samples from different regions in 
the weld and the size of these samples which will still provide an average stress-strain curve. The most 
recent approach used to tackle the last problem is to use Digital Image Correlation (DIC). DIC is based 
on tracking features on the sample surface as it deforms and uses software to obtain a strain map on the 
sample surface. From this strain map, the stress strain curve of the sample can be extracted at virtually 
any spatial resolution, with the only limitation being the resolution of the DIC measurement [7, 9, 10, 
11, 12, 13]. 

The purpose of this research is to obtain quantitative information on the mechanical properties of 
Inconel and Carbon Steel based dissimilar metal welds using a combination of experimental 
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techniques. This information will be essential in building robust damage models to predict fracture in 
dissimilar metal welds and to improve the design guidelines of welded pressure tubes. 

2. Experimental Procedure 

The dissimilar metal weld used in this research project was completed using Tungsten Inert Gas (TIG) 
Welding (also called GTAW) and provided by Atomic Energy of Canada Ltd. The weld microstructure 
was first revealed by polishing down sections of the weld to a mirror finish using a 0.05 gm colloidal 
suspension. To characterize the variations in strength in the weld region, Vickers micro-hardness 
indents were placed across and through the weld thickness using a 500 g load. Hardness indents 
provide insight into the local strengths of the material but do not provide the whole plastic flow 
behavior. The flow behaviour was seen during tensile tests on large tensile dog-bone shaped samples 
that were machined normal to the weld line. Tensile tests were performed on these samples in-situ with 
a digital image correlation (DIC) system. DIC is done by recording images during the tensile test 
which, upon processing, provide the strain field at the sample surface and the local material properties. 
Small tensile samples were extracted from different areas in the weld region using a femtosecond laser, 
in order to obtain local material properties for comparison with the DIC results. 

3. Results and Discussion 

3.1 Hardness Tests 

To understand how the material properties change across the weld and through the weld thickness, 
hardness tests were carried out. The first hardness test was performed in the Inconel region away from 
the weld. The hardness at the inner diameter of the tube started at around 180 HV and increased to 
almost 300 HV near the outer surface. This increase in hardness is most likely due to the residual 
stresses and plastic deformation created when machining the pipe out of a solid block of Inconel. 
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Figure 1 [A] Hardness Test 0.3 mm from the Outer Diameter [B] Hardness Test 7 mm from the Outer 
Diameter (c•-•-• 1 mm from ID) 

Tests were then performed across the weld. A first line of indents was completed 300 µm from the 
outer diameter. The test showed a very large decrease in hardness within the heat affected zone of 
Inconel. It can be predicted that the decrease is due to a release of residual stress and a recovery of the 
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dislocation structure when the material is heated during the welding process. Three more tests were 
done at thicknesses closer to the inner diameter. The test closest to the inner diameter saw an increase 
in hardness within heat affect zone of Inconel. Since there was very little deformation at this location, 
the heat didn't have any stresses and dislocations to anneal. Instead it is possible that the heat led to the 
formation of carbides which could explain the observed increase in hardness. 

3.2 Microstructure 

Figure 2A is an image from an optical microscope showing the 7 weld passes needed to create a weld 
as thick as the pipe. Very large grains can be observed within each pass. The grains within the heat 
affected zone of Inconel are significantly larger than those in the unaffected zone (Figure 2B). The 
opposite can be said about the grains within the heat affected zone of carbon steel; where the grains are 
significantly smaller than the unaffected zone. 

4 mm 

[A] 

Inconel HAZ-Inconel (big grains) Weld (very large grains) ... 

... Weld cid. Carbon Steel — HAZ (small grains) Carbon Steel (larger grains) 

[B] 

Figure 2 [A] Whole Weld Cross-Section Polished and Etched (Left to Right: Inconel 600, Inconel 82 
Weld Filler, Carbon Steel (Grade 106 B) [B] Microstructure after tensile test (Scale in bottom right 

valid for all images) 

3.3 Tensile Tests 

The large tensile samples were tested at three different thickness locations. The large tensile sample 
began as a smooth surface and became rough during testing (Figure 2B). As the sample is tested, grains 
re-orient themselves to accommodate the tensile deformation. The larger the grains, the more the 
change in orientation is visible at the surface. Slip steps are clearly visible in the large grains (above 25 
pm) in the weld and Inconel regions. The regions with small grains (under 10 pm) see little overall 
deformation. Figure 3A shows the stress-strain curve of samples taken from the outer diameter, middle 
and inner diameter regions of the weld. Samples did not show significant variations in strength but they 
did differ in failure strains. The total amount of strain is proposed to be directly proportional to the 
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width of the weld in the sample. The inner diameter has the smallest weld and deforms the least which 
results in low failure strains (Figure 3A). 
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Figure 3 [A] Stress-Strain Curves for Large Tensile Samples, [B] Digital Image Correlation Results: 
Local Strain vs. Engineering Stress 

The Digital Image Correlation (DIC) results show strain first accumulating in the weld region. The 
maximum strain value then varies in location between the weld and the carbon steel regions, before 
isolating at the fmal fracture location in the carbon steel. The stress obtained during the tensile test can 
be coupled to the local strain from the DIC result in order to obtain local stress-strain curves. These 
results were then compared to stress-strain curves obtained from the miniature tensile specimens 
(Figure 4A). 
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The total strain is higher in the miniature tensile sample for Inconel because the Inconel region did not 
reach fracture in the large tensile test and it did fracture in the miniature test. The strain seen in the DIC 
results of Carbon Steel is larger because DIC is able to track the local strain in the neck of the sample, 
whereas the strain in the miniature test is the average strain over the entire sample. These results show 
that DIC can provide accurate stress strain curve and that miniature tensile sample complement the 
information provided by DIC. 

4. Conclusion 

The mechanical properties of an Inconel to Carbon steel dissimilar metal weld were investigated. Large 
grains were observed in the weld region with smaller grains in the Inconel and Carbon Steel base 
metals. Micro-hardness profiles showed variations across the weld and through thickness. They were 
justified in terms of residual stresses and plastic strain accumulated in the in the sample during 
machining. Large tensile samples were extracted normal the weld line and were used to identify the 
material in which fracture initiated. Local stress-strain curves were built from digital image correlation 
(DIC) data and compared to stress-strain curves obtained from miniature tensile samples extracted from 
the Carbon Steel and Inconel regions. The results demonstrate the advantage of using DIC for 
extracting local material properties in dissimilar weld systems. Finally, the variations in the materials 
stress-strain curves though-thickness emphasize the need for obtaining a complete map of the 
mechanical properties in the weld region for predictive models to be accurate. 
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