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ABSTRACT 

This paper presents an analysis of a new heat-transfer correlation developed for supercritical carbon 
dioxide (CO2) flowing in vertical bare tubes. A large set of supercritical CO2 experimental data was 
obtained from Chalk River Laboratories (CRL) AECL. Data points were obtained for an upward 
flow of CO2 inside 8-mm ID vertical Inconel-600 tube with a 2.208-m heated length for a wide 
range of flow conditions: Pressures ranging from 7.4 to 8.8 MPa, mass fluxes from 900 to 3000 
kg/m2s, inlet fluid temperatures from 20 to 40°C, and heat fluxes from 15 to 615 kW/m2; and for 
several combinations of wall and bulk-fluid temperatures that were below, at, or above the 
pseudocritical temperature. 

1. INTRODUCTION 

The objective of the present experimental research is to obtain detailed reference dataset on heat transfer 
in supercritical CO2 and improve our fundamental knowledge of the heat-transfer processes and 
handling of supercritical fluids. The results of the analysis can be applied towards developing the 
Generation-IV Super Critical Water Reactor (SCWR) concepts. The SCWR is a new conceptual design 
proposed by AECL, which uses high-temperature (coolant temperatures up to 625°C) and high-pressure 
(-25 MPa). Such a design would result in much higher thermal efficiencies of up to 50-55% as opposed 
to current design limitations of about 30-35%. The coolant would pass through its pseudocritical 
temperature (see Fig 1) before it reaches the channel outlet [1]. Thus it is important to investigate the 
supercritical fluid behaviour at those conditions. Carbon dioxide is used as a modelling fluid as it a less 
expensive alternative to using SuperCritical Water. 

In support of developing SCFs applications, heat transfer analysis at supercritical conditions is very 
important. However, heat transfer process for supercritical fluids is difficult to model especially when it 
passes through pseudocritical regions, as there are very rapid variations in thermophysical properties of 
the fluid (see Fig 2). Figure 3, shows transition of CO2 thorough various phases as its temperature and 
pressure are increased. The transition from single phase liquid to single phase gas does not involve a 
distinct phase change under these conditions. Phenomena such as dryout (or critical heat flux) are 
therefore not relevant [2]. However, at supercritical conditions, deteriorated heat transfer, i.e., lower 
heat transfer coefficient (HTC) values—compared to those for normal or regular heat transfer may exist 
[3] (see Fig. 4). Thus, the task of calculating Heat Transfer Coefficient (HTC) is very complicated and 
historically only empirical correlations have been proposed for this purpose, as the exact mechanics of 
the process is difficult to express using fundamental principles. 
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In support of developing SCFs applications, heat transfer analysis at supercritical conditions is very 
important.  However, heat transfer process for supercritical fluids is difficult to model especially when it 
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Figure 1: Pressure-Temperature diagram for 
CO2 [1] 
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Figure 3: Transition of CO2 through various 
phases (a)Two phase (b) Boiling and 
Condensation starting to occur (c)-(d) Transition 
to vapour phase (e) Transition through critical 
point and (f) Supercritical CO2 (single phase) 
(Pictures from a SC CO2 Experimental Setup at Faculty of 
Science, UOIT — Courtesy of Donald McGillivray and Liliana 
Trevani) 
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Figure 4: DHT and IHT regimes in 
Supercritical CO2 [1] 

Previous studies have shown that existing empirical correlations, such as the Dittus-Boelter, Bishop et 
al., and Jackson correlations, deviate significantly from experimental Heat Transfer Coefficient (HTC) 
values, especially, within the pseudocritical range. The Swenson et al. correlation provides a relatively 
better fit for the experimental data, as compared to the previous three correlations within some flow 
conditions, but deviates from data within other conditions [4]. Besides, these correlations were 
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developed for water and our results indicate that they cannot directly be applied to be used for CO2. 
Therefore, new empirical correlation to predict the HTC values is developed based on the CO2 dataset. 
Statistical error calculations were performed using graphical techniques. 

2. BACKGROUND 

2.1 Scaling Parameters between SCFs 

As discussed previously, there are significant changes in the thermo-physical properties of CO2
especially during the transition to the supercritical conditions. Other fluids such as water and R134a 
also demonstrate similar trends within the psedocritical region. Thus, CO2 may be used as a modelling 
fluid to investigate mechanics associated with SC Water and possibly other fluids as well. Preliminary 
parameters used for scaling SCF are listed in Table 1. These scaling parameters were deduced from 
those proposed by Jackson and Hall in 1979 [5] and Gorban' et al. in 1990 [6]. Table 2 shows the 
critical parameters of CO2, R134a and water calculated using NIST [7]. 

However, thermo-physical properties of different fluids may vary significantly with respect to absolute 
values. To demonstrate this idea, some common thermo physical properties were plotted for Water, 
CO2 and R134a as they transition through the pseudo-critical region. Figure 5-10 show the thermo-
physical property profiles vs. reduced temperature (i.e Tr = T / Tcr) at their respective equivalent 
pressures (P=25 MPa for water, P=8.4 for CO2 and P=4.6 MPa for R134a using the scaling parameters 
shown in Table 1. ) 

Table 1: Scaling Parameters for SCFs 
modellin [1] 

Pressure (P) 
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Table 2: Critical parameters of selected 
fluids [7] 

Fluid Per, 

MPa 
T er, 

°C 
Pm 

kg/m3
CO2 7.3773 30.978 467.6 
Freon R- 
134a 

4.0593 101.06 511.9 

Water 
(H20) 

22.064 373.95 322.39 

In general, an analysis of the graphs in Figures 5-10 shows that property profiles for all 3 fluids are 
fairly similar. However, there are significant variations between the absolute values of the properties 
of different fluids (especially for the case of water). These differences in absolute values, would pose 
difficulties to propose a single generic HTC correlation that could be applied to different SCFs even 
after scaling parameters are considered. Thus, it appears that HTC correlations that are developed for 
SC water cannot be directly applied towards SC CO2. 
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In general, an analysis of the graphs in Figures 5-10 shows that property profiles for all 3 fluids are 
fairly similar.  However, there are significant variations between the absolute values of the properties 
of different fluids (especially for the case of water).  These differences in absolute values, would pose 
difficulties to propose a single generic HTC correlation that could be applied to different SCFs even 
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2.2 Historical Note on Use of Supercritical Fluids in Power Generation 

In the 1950s, the idea of using supercritical water appeared to be rather attractive for thermal-power 
industry [1]. The objective was increasing the total thermal efficiency of coal-fired power plants. 
Thermal efficiency is a direct function of the temperature and pressure drop across the hubine, thus 
higher operating ranges would directly correlate to higher efficiencies. After various experimental and 
pilot projects, Supercritical water technology was successfully applied in coal—fired thermal power 
plants and is the largest application of a fluid at supercritical pressures in industry. 

Between late 1950s and early 1960s, studies were also conducted to investigate the possibility of using 
supercritical water in nuclear reactors [1]. Several designs of nuclear reactors using supercritical water 
were proposed in Great Britain, France, the USA, and the former USSR. However, the idea was 
abandoned for almost 30 years with the emergence and great success of Light Water Reactors (LWRs). 
SCWR technology regained interest in the 1990s following LWRs maturation. As a part of Generation 
IV International Forum (GT), SCWR concepts (which include Pressure-Vessel (PV) and Pressure-Tube 
(PT) reactors) are under development worldwide. Currently AECL Gine& is working towards 
developing a preliminary design of a PT-SCWR concept Therefore, development of heat-transfer 
correlations for supercritical fluids based on modern sets of experimental and thermophysical properties 
data is an important task. 
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3. EXISTING CORRELATIONS FOR FORCED CONVECTIVE HEAT TRANSFER IN 
BARE TUBES 

A number of empirical generalized correlations have been proposed to calculate the HTC in forced 
convection for various fluids (mainly water) at supercritical pressures. Some of the most widely used 
heat-transfer correlation are presented in Table 3. Among these, Dittus-Boelter, Bishop et al., 
Swenson et al. and Jackson et al. are very commonly used for heat transfer applications. 

The majority of these empirical correlations were proposed in the 1960s and 1970s, when experimental 
techniques were not as advanced as they are today. Also, thermophysical properties have been updated 
since that time. For example, a peak in thermal conductivity in critical and pseudocritical points, was 
not officially recognized until the 1990s [1]. As a result, most of these correlations do not fit current 
experimental data with the desired accuracy. Figure 11-12 shows a comparison of HTC values 
calculated through various correlations for SCW data from Kirillov [8]. It can be noted that differences 
in calculated HTC values can be up to several hundred percent especially within the pseudocritical 
range. Swenson et al. and newer correlations such as Mokry et al. and Gupta et al. are relatively more 
accurate even within the pseudocritical ranges. However, these correlations cannot be directly applied 
to SC CO2. 
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Therefore, empirical heat-transfer correlations based on bare-tube CO2 data and latest thermophysical 
properties should be developed and used as a preliminary, but conservative approach. This approach is 
based on the fact that values of HTC in bare tubes are generally lower than those in bundle geometries. 
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3. EXISTING CORRELATIONS FOR FORCED CONVECTIVE HEAT TRANSFER IN 
BARE TUBES 

A number of empirical generalized correlations have been proposed to calculate the HTC in forced 
convection for various fluids (mainly water) at supercritical pressures.  Some of the most widely used 
heat—transfer correlation are presented in Table 3.   Among these, Dittus-Boelter, Bishop et al., 
Swenson et al. and Jackson et al. are very commonly used for heat transfer applications.  
 
The majority of these empirical correlations were proposed in the 1960s and 1970s, when experimental 
techniques were not as advanced as they are today.  Also, thermophysical properties have been updated 
since that time.  For example, a peak in thermal conductivity in critical and pseudocritical points, was 
not officially recognized until the 1990s [1].  As a result, most of these correlations do not fit current 
experimental data with the desired accuracy.  Figure 11-12 shows a comparison of HTC values 
calculated through various correlations for SCW data from Kirillov [8].  It can be noted that differences 
in calculated HTC values can be up to several hundred percent especially within the pseudocritical 
range.  Swenson et al. and newer correlations such as Mokry et al. and Gupta et al. are relatively more 
accurate even within the pseudocritical ranges.  However, these correlations cannot be directly applied 
to SC CO2.  
 

Figure 11: Comparison of HTC values 
calculated through various correlations with 
experimental data of 4-m circular vertical bare 
tube (D=10mm): Pin ~ 24 MPa and G ~ 1000 
kg/m2s. 

Figure 12. Comparison of HTC values 
calculated through various correlations with 
experimental data of 4-m circular vertical bare 
tube (D=10mm): Pin ~ 24 MPa and G ~ 1500 
kg/m2s. 

 
Therefore, empirical heat-transfer correlations based on bare-tube CO2 data and latest thermophysical 
properties should be developed and used as a preliminary, but conservative approach.  This approach is 
based on the fact that values of HTC in bare tubes are generally lower than those in bundle geometries.  
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Author Correlation Operating Parameters 

Dittus-Boelter (1930) Nub = 0.0243Ret8P4.4 Subcritical Pressures 

Bringer and Smith 
(1957) 

Nu. = 0.0266 R4.77134135 (for Water) 

Nu. = 0.0375 Rer7P4.55 (for CO2) 

tx = tb If (tpc — tb)/(tw — tb) < 0 
tx = tpc If 0 < (tpc — tb)I(tw — tb) < 1 

tx = tw If (tpc — tb)/(tw — tb) > 1 

SCW (P-34.5 MPa) 

Krasnoshchekov and 
Protopopov (1960) 

Nu = Nuo 
(_\ 0.11 Lk \ -0.33 

(cp, 

e )0.35 
lib 
t.tiv) lid 

b Re Pr 
8Nu0 — 

P=22.3-32 MPa (water) 
P=8.3 MPa (CO2) 

12.7AN4 - 1) + 1.07 
8 

1 
- f (1.82 log10 Reb — 1.64)2

Bishop et al. (1964) 

Nub = 0.0069Rer prg.66 
(pw\0.43 

Pb ) 

P: 
22.8-27.6 MiPa 
Tb=282 -527° C 
G=651-3662 kg/m2s 
q=0.31-3.46 MW/m2

Swenson et al. (1965) 

Nu,, = 0.00459R4923 pri0v.613 
(pw  a231 

) 

P: 
22.8-41.4 MPa

Tb °=75-576 C 
T=93-649°C 
G=542-2150 kg/m2s 

Gorban' et al. (1990) Nub = 0.0059R490pr-b0.12 (for water) 

Nub = 0.0094Reg.86pr-b 0.15 (for R - 12) 

Tb > Ta . 

Jackson (2002) 0.3 n
Nu = 0.0183Reg.82Prg.5 (1)4') (-611 

Pb Wpb 
n = 0.4 For Tb < Tw < Tx  and for 

1.2 • Tp, < Tb < Tw

n = 0.4 + 0.2 (  + 1) 
Tpc 

For Tb < Tpc < Tw; and 

n= 0.4 + 0.2(Tx 
Tpc

+1)[1 —0 77 —1)] 

For Tpc < Tb < 1.2 • Tpc and Tb < Tw

Supercritical pressures 

Sarah Mokry et al. 
(2009)

0.564 Supercritical Ranges 
Nub = 0.0061 Reb  

prb0.684 (pw 

/-1/3 ,/ 

(developed for SC H2O) 
Gupta et al. (2011) 0.76 ( µw)0.4 ( pw 0.156 Supercritical Ranges 

Nu,, = 0.0033 Rea;94 Pr,,„ 
lib  Pb ) 

(developed for SC H2O) 
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4. DEVELOPING NEW CORRELATION FOR SC CO2 

4.1 Experimental Dataset 

The experimental data used to develop our correlations was obtained from Fuel Channel 
Thermalhydrauliccs (FCT) laboratory located at Chalk River (CRL), Canada. The experimental dataset 
was obtained at the MR-1 test facility (see Fig. 13) at the CRL lab, which is a former steam/water high 
pressure and high-temperature pump loop adapted for use with supercritical CO2 [1]. 
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Figure 13: Fuel Channel Thermalhydraulics MR-1 Loop Schematic [1] 

The test section (see Fig. 14), is made up of 2.4 m long Inconel 600 tube with an inner diameter of 8 
mm, an outer diameter of 10mm. Only 2.208 m of the tube is heated. Direct electrical current passes 
through the tube wall, heats the fluid from the inlet to the outlet power terminals with the use of copper 
clamps. The test section and mixing chambers are wrapped with thermal insulation to minimize heat 
loss. The test section is attached with structural supports to a post to maintain its vertical orientation. 
Table 4 lists the test-matrix parameters showing the minimum and maximum range of operating 
parameters where the dataset was obtained. Table 5 lists the uncertainties of measured and calculated 
parameters in relation to the experimental dataset (for reference purposes only). 

Table 4: Test-Matrix Parameters 
P (MPa) Tin (°C) Tow (°C) T,,, (°C) q (kW 1 m2) G (kg/m2s) 
7.57-8.8 20-40 29-136 29-224 9.3-616.6 706-3169 
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4. DEVELOPING NEW CORRELATION FOR SC CO2 

4.1 Experimental Dataset 
 
The experimental data used to develop our correlations was obtained from Fuel Channel 
Thermalhydrauliccs (FCT) laboratory located at Chalk River (CRL), Canada.  The experimental dataset 
was obtained at the MR-1 test facility (see Fig. 13)  at the CRL lab, which is a former steam/water high 
pressure and high-temperature pump loop adapted for use with supercritical CO2 [1]. 
 

 
Figure 13: Fuel Channel Thermalhydraulics MR-1 Loop Schematic [1] 

 
The test section (see Fig. 14), is made up of 2.4 m long Inconel 600 tube with an inner diameter of 8 
mm, an outer diameter of 10mm. Only 2.208 m of the tube is heated.  Direct electrical current passes 
through the tube wall, heats the fluid from the inlet to the outlet power terminals with the use of copper 
clamps.  The test section and mixing chambers are wrapped with thermal insulation to minimize heat 
loss.  The test section is attached with structural supports to a post to maintain its vertical orientation.  
Table 4 lists the test-matrix parameters showing the minimum and maximum range of operating 
parameters where the dataset was obtained.  Table 5 lists the uncertainties of measured and calculated 
parameters in relation to the experimental dataset (for reference purposes only).  
 
Table 4: Test-Matrix Parameters 
P (MPa) Tin (°C) Tout (°C) Tw (°C) q (kW/m2) G (kg/m2s) 
7.57-8.8 20-40 29-136 29-224 9.3-616.6 706-3169 
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The dataset includes over 4,600 points. An analysis of the data showed Deteriorated Heat-Transfer 
(DHT) and Improved Heat-Transfer (IHT) regions. The objective of this study was to develop an 
updated heat-transfer correlation for the NHT regime. Therefore, data points in the DHT regions were 
removed from the dataset. The DHT region is subject to future investigations. Abnormalities, such as 
defective thermocouple readings were also removed from the dataset. Also, the very first and last 
points of most datasets were removed. Temperatures at these outlying points were likely affected by 
test-section clamps, which were at a lower temperature than the heated part of tube. Overall, 
approximately 88% of the experimental data were used to develop the correlation. 

Table 5: Uncertainty of measured and 
calculated parameters 

Parameter Uncertainty 
Test Section 
Power 

1-0.46% for P = 3 kW 
1-0.30% for P = 35 kW 

Absolute 
Pressure 

1-0.2% 

Differential- 
Pressure Cells 

±30.1% for Apmin
= 5 kPa 

±2.2% for Apma, 
= 70 kPa 

Average Heat 
Flux 

1-0.53% for qa„,eh, —53.7 
kW 
1-0.39% for qa„,,,,,, 26.2 
kW 

Temperatures 1-0.3°C within 0-100°C 
2.2°C beyond 100°C 

Mass Flow rates 12.5% at t=19°C and 
p=8.36 MPa for ma d,= 46 
g/s (G=902 kg/m2s) 

1.6% at t=19°C and 
p=8.36 MPa for ma, ,,,= 155 
g/s (G=3039 kg/m2s) 

Electrical 
Resistivity 

1-0.204)/0 for L='2461mm 

Thermophysical 
Properties (near 
pseudocritical 
point) 

Ap = ±7%; AH = ±2.5%; 
Ac,, = ±4.5%; Ak 

= ±2%; 
Ag = ±7%; 
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Figure 14: Test Section of MR-1 Loop [1] 

4.2 Methodology for Developing a New Correlation 

A dimensional analysis was performed in order to obtain a general empirical form of a correlation for 
HTC calculations. It is well known that HTC is not an independent variable, and the values are affected 
by mass flux, inner diameter, heat flux, thermophysical properties variations, etc. Therefore, a set of the 
most important variables, which affect the HTC, were identified based on theoretical and experimental 
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The dataset includes over 4,600 points. An analysis of the data showed Deteriorated Heat-Transfer 
(DHT) and Improved Heat-Transfer (IHT) regions.  The objective of this study was to develop an 
updated heat-transfer correlation for the NHT regime.  Therefore, data points in the DHT regions were 
removed from the dataset.  The DHT region is subject to future investigations.  Abnormalities, such as 
defective thermocouple readings were also removed from the dataset.  Also, the very first and last 
points of most datasets were removed.  Temperatures at these outlying points were likely affected by 
test-section clamps, which were at a lower temperature than the heated part of tube.  Overall, 
approximately 88% of the experimental data were used to develop the correlation. 

 
Table 5: Uncertainty of measured and 
calculated parameters 

Parameter Uncertainty 
Test Section 
Power 

±0.46% for P = 3 kW 
±0.30% for P = 35 kW 

Absolute 
Pressure 
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Differential-
Pressure Cells 

േ30.1%	݂ݎ	Δ
ൌ 5 kPa  
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ൌ 70 kPa  

Average Heat 
Flux 

±0.53% for qave min =53.7 
kW 
±0.39% for qave max =626.2 
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Temperatures ±0.3°C within 0-100°C 
±2.2°C beyond 100°C 

Mass Flow rates ±12.5% at t=19°C and 
p=8.36 MPa for mmin= 46 
g/s (G=902 kg/m2s) 
±1.6% at t=19°C and 
p=8.36 MPa for mmax= 155 
g/s (G=3039 kg/m2s)

Electrical 
Resistivity 

±0.20% for L=2461mm 
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Properties (near 
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Figure 14: Test Section of MR-1 Loop [1]

 
4.2 Methodology for Developing a New Correlation 
 
A dimensional analysis was performed in order to obtain a general empirical form of a correlation for 
HTC calculations.  It is well known that HTC is not an independent variable, and the values are affected 
by mass flux, inner diameter, heat flux, thermophysical properties variations, etc.  Therefore, a set of the 
most important variables, which affect the HTC, were identified based on theoretical and experimental 
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HTC studies at supercritical pressures. The Buckingham H-Theorem [9] was used to produce a model 
formula, where Nu. was represented as a product of various dimensionless terms: 

,, 

Nu = C Renl Prn2 (''') 
n3 

( l'i) 
n4 

( P4'
ns

) kb lib Pb) 
(1) 

Where, x represents the characteristic temperature at which the properties are calculated. Wall 
Temperature approach (similar to Swenson et. al) was chosen as the characteristic temperature for our 
correlation. In order to determine the coefficients in the general form proposed by Eq. (1), manual 
iterations were performed. The experimental dataset, with removed outliers and points in the DHT 
regime was used to calculate the required parameters through the NIST software [7]. Scatter plots were 
then created and analyzed using linear regression on a log-log scale. 

4.3 Proposed New Correlation 

Preliminary coefficients C, n1, n2, etc. that were determined using manual iterations were then further 
refined. Some restraints put on values of these coefficients and plotting techniques were employed to 
obtain a preliminary correlation. To finalize the correlation, the complete set of primary data was 
coupled with the preliminary correlation using the SigmaPlot Dynamic Fit Wizard to perform the final 
adjustments. This process tuned the constant and exponents to minimize uncertainty. The resulting 
final correlation is represented by Eq. (2) below. 

0.139 ( 
Pw)0.836 (kw \ —0.754 ( itiv \ —0.222 

Nu = 0.0038 Rea957 Pr w  w Pb) k.kbl k. lib I (2) 

It must be noted that the above correlation is applicable only for the referenced CO2 dataset from Chalk 
River Labs (as no investigations has been conducted to determine its applicability for other datasets) 
and its range of applicability is within the flow conditions shown in Table 4. More investigations need 
to be conducted to see how well the correlation predicts HTC values from other independent datasets. 

4.4 Graphical Error Analysis 

Figures 15 and 16 show scatter plots of the experimental HTC and Tw values, versus the calculated 
values using Eq. (2). The results indicate that the spread of Experimental vs. Calculate graphs is about 
±25-30% for HTC values and about ±15-20% for the calculated wall temperature (for the referenced 
dataset) which is a significant improvement from the previous correlations. The mean and root mean 
square (RMS) errors of the proposed correlation, as well as some of the existing correlations are shown 
in Table 6. Note that the proposed correlation shows the least errors for HTC and is better than any of 
the previous correlations by a significant margin for the referenced dataset. Also, since the correlation 
was developed from data-points ranging from sub-critical regions to super-critical regions, it also seems 
to predict the transition values (in pseudocritical range) much better than previous correlations. 
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HTC studies at supercritical pressures.  The Buckingham П-Theorem [9] was used to produce a model 
formula, where Nux was represented as a product of various dimensionless terms:  
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Where, x represents the characteristic temperature at which the properties are calculated.  Wall 
Temperature approach (similar to Swenson et. al) was chosen as the characteristic temperature for our 
correlation.  In order to determine the coefficients in the general form proposed by Eq. (1), manual 
iterations were performed.  The experimental dataset, with removed outliers and points in the DHT 
regime was used to calculate the required parameters through the NIST software [7].  Scatter plots were 
then created and analyzed using linear regression on a log-log scale.  
 
4.3 Proposed New Correlation 
 

Preliminary coefficients C, n1, n2, etc. that were determined using manual iterations were then further 
refined.  Some restraints put on values of these coefficients and plotting techniques were employed to 
obtain a preliminary correlation.  To finalize the correlation, the complete set of primary data was 
coupled with the preliminary correlation using the SigmaPlot Dynamic Fit Wizard to perform the final 
adjustments.  This process tuned the constant and exponents to minimize uncertainty.  The resulting 
final correlation is represented by Eq. (2) below.  
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It must be noted that the above correlation is applicable only for the referenced CO2 dataset from Chalk 
River Labs (as no investigations has been conducted to determine its applicability for other datasets) 
and its range of applicability is within the flow conditions shown in Table 4.  More investigations need 
to be conducted to see how well the correlation predicts HTC values from other independent datasets.  

4.4 Graphical Error Analysis 
 
Figures 15 and 16 show scatter plots of the experimental HTC and Tw values, versus the calculated 
values using Eq. (2).  The results indicate that the spread of Experimental vs. Calculate graphs is about 
±25-30% for HTC values and about ±15-20% for the calculated wall temperature (for the referenced 
dataset) which is a significant improvement from the previous correlations.  The mean and root mean 
square (RMS) errors of the proposed correlation, as well as some of the existing correlations are shown 
in Table 6.  Note that the proposed correlation shows the least errors for HTC and is better than any of 
the previous correlations by a significant margin for the referenced dataset.  Also, since the correlation 
was developed from data-points ranging from sub-critical regions to super-critical regions, it also seems 
to predict the transition values (in pseudocritical range) much better than previous correlations.  
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5. CONCLUSIONS 

1. Fossil fired plants have implemented the use of SCW to achieve 45-50 % thermal efficiencies. 
Therefore, an important task for the nuclear-power industry is increasing the thermal efficiency of 
power plants at least to 45 — 50%. This increase can be achieved if high-temperature (>500°C) and 
high pressure (-25 MPa) nuclear reactors are designed that will make use of SCFs (such as SCWR). 

2. CO2 can be used as a modelling fluid to study the behaviour of SCFs, as CO2 reaches critical point 
at much lower temperatures and pressures. Thus the cost of performing experiments on SC CO2 is 
significantly lower than that on SCW. Scaling parameters may be used to correlate results between 
different fluids as thermo-physical properties show similar trends when transitioning between 
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pseudocritical regions. However, expressions for scaling parameters are preliminary and require 
further consideration, as the absolute values of thermophysical properties vary significantly within 
the pseudocritical range. 

3. Extensive literature survey and error analysis of the existing HTC correlations showed that their 
predicted values can deviate significantly from experimental values, especially within the 
pseudocritical regions. It also appears that correlations developed for SCW cannot be directly 
applied to SC CO2. Thus, experimental test matrix for CO2 was used to develop a new preliminary 
heat-transfer correlation. The uncertainty (spread) associated with the correlation is about ±20-30% 
for HTC values and about ±15-20% for the calculated wall temperature (for the referenced dataset). 
Further error analysis needs to be performed to determine its applicability with other independent 
datasets. 
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