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Abstract 

The current paper presents the approach used by the Gentilly-2 Nuclear Power Plant, Hydro-
Quebec, in elaborating a specific Aging Management Program (AMP) for its concrete 
containment structure. It is developed as a part of preparation activities for the plant 
refurbishment project. The specificity of the AMP consists in addressing Alkali-Aggregate 
Reaction (AAR) degradation mechanism which is not well known in the nuclear power industry. 
HQ developed a numerical model based on finite elements for assessing the concrete containment 
structure behaviour under the impact of AAR and other relevant degradation mechanisms. Such 
predictions enable a better targeting of corrective and mitigating actions during the second cycle 
of the G-2 operation while required. 

Key words: Aging Management Program, Alkali-aggregate reaction, Concrete containment 
structure. 

1. Introduction 

The design life of existing nuclear power plants was often chosen to be 30-40 years. This original 
40-year term for reactor licenses was based mainly on economic considerations — not on 
limitations of nuclear technology [Naus, D.J., 2008]. Due to this selected period, some structures 
and components may have been designed on the basis of an expected 30-40-year service life. 
Given than numerous NPPs are at the end of this projected life span, and plan to continue 
operation for another 25-40 years, it is essential to elaborate adequate aging management 
programs. 

It is essential that the effects of age-related degradation of plant structures, as well as systems and 
components, be assessed and managed during both the current operation and subsequent 
extension life cycle period for ensuring the safe operation of nuclear power plants in the extended 
life cycle. 

The nuclear power plant Gentilly-2, Hydro-Quebec, is approaching the end of its initially 
designed life cycle of 30 years. The plant is poised for a major refurbishment project to extend its 
life cycle for another 25-30 years. Such an enterprise also involves elaborating satisfactory aging 
management programs (AMP) of systems structures and components (SSC) critical for both 
safety and generation, including its concrete containment structure. It is important to emphasize 
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that the concrete structures at G-2 are also under impact of a particular degradation mechanisms 
known as Alkali-Aggregate Reaction (AAR), which is not necessarily observed as a nuclear 
industry-wide phenomenon. So, the G-2 AMP also has to adequately address this particular issue 
in its AMP. 

The paper presents a G-2 approach in developing a systematic AMP for its concrete containment 
structure. 

2. Relevant Degradation Mechanisms 

In general, the degradation mechanisms affecting concrete structures are extensively studied and 
relatively well known. It is also true for the concrete containment structures in the nuclear power 
industry where those degradation mechanisms are subdivided in the following subgroups as a 
function of the main influence factors: temperature, chemical, mechanical or radiation [HQ 
Technical Documentation; EPRI, 2010; COG, 2009]. 

However, not all the degradation mechanisms presented in the technical and scientific literature 
are applicable to the G-2. Extensive research works at G-2 [HQ Technical Documentation] have 
identified a number of dominant degradation mechanisms, which have to be monitored and 
controlled: 

Cracking occurred during concrete construction (due to constraints related to thermal 
hydration), 

Freeze-Thaw, 

Concrete creep and loss of post-tension, 

Impact of seism, 

Periodic integrated leakage-rate testing (high pressure air tightness safety testing) at 124 
kPa(g) (each 3 years), 

Alkali-Aggregate Reaction (AAR) 

Other known concrete degradation mechanisms [IAEA, 1998; EPRI, 2010] have been analyzed as 
well but no immediate particular activity is needed in the AMP for their control. However, the 
designed aging management program (AMP process) has capabilities of capturing any new 
issues/concerns (observed at G-2, through new knowledge or industry-wide operating experience 
- OPEX) for taking them into account more closely, and elaborating the disposition in an 
adequate manner. 

Alkali-aggregate reaction (AAR) 

AAR is a chemical processes that involves the reaction of alkali ions in cement with silica 
mineral aggregates, and can cause degradation in concrete [EPRI, 2010]. The reaction forms an 
alkali-silica gel that expands when it comes into contact with water, generating hydrostatic 
pressure. A similar reaction involves carbonate aggregates and alkalis. Incipient-stage damage of 
this sort typically manifests itself as small surface cracks in an irregular pattern. Extensive 
damage due to alkali-aggregate reactions consists of crack propagation in the direction of least 
impedance (for example, normal to a compressive stress direction). 
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3. Technical Basis of the Aging Management Program 

3.1 General Approach 

Basic requirements and safety functions for containment structures include [Naus, D.J., 2008]: 

• Provide an "essentially" leak-tight barrier against the uncontrolled release of radioactivity 
to the environment for all postulated design basis accident conditions; 

• Accommodate the calculated pressure and temperature conditions resulting from a loss-
of-coolant accident and other postulated accidents; 

• Withstand periodic integrated leakage-rate testing at the peak calculated accident pressure 
that maybe at levels up to and including the containment design pressure; and 

• Permit appropriate periodic inspection of all important components and surfaces and the 
periodic testing of the leak tightness of containment penetrations. 

The Aging Management Program of the concrete containment structures is a set of engineering, 
operation and maintenance actions to control its aging degradation within acceptable limits. 
These actions include inspections, detection and assessment of defects, maintenance, component 
replacement or refurbishment, and modification of operations [COG, 2009]. 

The technical basis of the aging management program for the concrete containment structure at 
G-2 is based on the regulatory requirements and philosophy described in RD-334, CSA N287.7-
08, and CSA N285.5-08. The program's intent is to comply with these regulatory documents. 

This AMP primarily aims at elaborating an adequate inspection and monitoring program for 
controlling aging degradation mechanisms, and proposing, in a structured way, 
corrective/mitigating actions if required, which will ensure an acceptable fulfilling of its safety 
function for the second life cycle after the refurbishment (another 25-30 years). The AMP has to 
be a living program and should also be integrated without major changes into existing plant-wide 
Quality Assurance program. 

The program also defines the following specific objectives: 

Assure the regulatory compliance to relevant standards and CNSC regulatory documents 

Monitor and control AAR 

Optimize the frequency of the integrated leakage-rate test. 

Apart its own technical and research works within Hydro-Quebec (HQ), the program takes into 
account relevant internal and external operating experience, industry-wide research works, and 
the best practices in this area [IAEA, 1998, 1999; 2000; 2001; 2006, 2009a; 2009b; EPRI, 2003; 
2005; 2006; 2007; 2008; 2010; NRC, 2000, 2003a, 2003b, 2004, 2006a, 2006b, 2010; 2011, 
COG, 2006, 2008, 2009, 2010, 2011; HQ Technical Documentation; Gocevski, 2010; 
NEA/CSNI/R, 2009]. 

3.2 AAR issue 

Addressing the issue related to the impact of AAR on the G-2 concrete containment structure 
requires more elaborated approach. This matter was also extensively discussed with CNSC who 
requires that Hydro-Quebec develops an adequate approach in tackling this problem. The AAR 
may potentially affect the concrete structural integrity, and the air tightness of the concrete 
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containment envelope due to a development of micro and macro cracking [HQ Technical 
Documentation; EPRI, 2010]. The existing nuclear industry-wide experience and practice do not 
provide sufficient technical basis to deal adequately with this AAR concern, and HQ has had to 
develop its own methods in this regard. 

The G-2 NPP as a part of Hydro-Quebec has chosen to develop a numerical model based on finite 
elements, which has capabilities of accurately modeling the impact of relevant degradation 
mechanisms including AAR. It is based on the significant experience of other HQ's hydro dams 
and structures which have been affected by the AAR. HQ structural experts have developed an 
elaborated approach using numerical simulations based on finite elements for predicting the 
structural behaviour of those structures under the impact of AAR. The accurate prediction of their 
behaviour is of a great value in defining corrective and mitigating actions. Thus, the G-2 NPP 
made a decision of developing an extensive collaboration with HQ's structural experts in this 
field for tackling the AAR issue. A numerical model of the reactor building has been developed. 
It includes all the relevant degradation mechanisms including AAR for temporal definition of its 
behaviour. The numerical model has been validated against CSA N286.7 Standard. This 
orientation is in general consistent with the newest industry developments [NRC, 2006b, 2010]. 

The fact that this model is able to predict the behaviour of the concrete containment structure over 
time helps the decision-making process in defining and targeting corrective and mitigating actions 
if required. It is integrated in the whole AMP as its constitutive part. There is little experience in 
the nuclear power industry of systematically integrating numerical model tools into an integral 
AMP of concrete containment structures. Therefore, its adequate integration into the program 
represents an engineering and organisational challenge. The technical and mathematical basis of 
the numerical model is discussed below. 

4. Structure of the aging management program 

In accordance with regulatory requirements, and best industry practices, the constitution of the 
AMP of the concrete containment structures at G-2 understands several activities and tasks. The 
G-2 program takes into consideration high level approaches proposed by [IAEA, 1998, 2000; 
2001; 2006, 2009a; 2009b; COG, 2009; CNSC, 2011; HQ Technical Documentation]: 

Periodic inspection of the containment SSC for the identification and assessment of 
defects, 

Monitoring and/or mitigation of defects by existing, modified or new maintenance 
activities, 

Repair defects 

33
rd

 Annual Conference of the Canadian Nuclear Society 

36
th

 Annual CNS/CNA Student Conference 

2012 June 10 – June 13 

TCU Place, Saskatoon, Saskatchewan 

 

containment envelope due to a development of micro and macro cracking [HQ Technical 

Documentation; EPRI, 2010]. The existing nuclear industry-wide experience and practice do not 

provide sufficient technical basis to deal adequately with this AAR concern, and HQ has had to 

develop its own methods in this regard. 

The G-2 NPP as a part of Hydro-Québec has chosen to develop a numerical model based on finite 

elements, which has capabilities of accurately modeling the impact of relevant degradation 

mechanisms including AAR. It is based on the significant experience of other HQ’s hydro dams 

and structures which have been affected by the AAR. HQ structural experts have developed an 

elaborated approach using numerical simulations based on finite elements for predicting the 

structural behaviour of those structures under the impact of AAR. The accurate prediction of their 

behaviour is of a great value in defining corrective and mitigating actions. Thus, the G-2 NPP 

made a decision of developing an extensive collaboration with HQ’s structural experts in this 

field for tackling the AAR issue. A numerical model of the reactor building has been developed. 

It includes all the relevant degradation mechanisms including AAR for temporal definition of its 

behaviour. The numerical model has been validated against CSA N286.7 Standard. This 

orientation is in general consistent with the newest industry developments [NRC, 2006b, 2010].  

The fact that this model is able to predict the behaviour of the concrete containment structure over 

time helps the decision-making process in defining and targeting corrective and mitigating actions 

if required. It is integrated in the whole AMP as its constitutive part. There is little experience in 

the nuclear power industry of systematically integrating numerical model tools into an integral 

AMP of concrete containment structures. Therefore, its adequate integration into the program 

represents an engineering and organisational challenge. The technical and mathematical basis of 

the numerical model is discussed below. 

4. Structure of the aging management program 

In accordance with regulatory requirements, and best industry practices, the constitution of the 

AMP of the concrete containment structures at G-2 understands several activities and tasks. The 

G-2 program takes into consideration high level approaches proposed by [IAEA, 1998, 2000; 

2001; 2006, 2009a; 2009b; COG, 2009; CNSC, 2011; HQ Technical Documentation]: 

- Periodic inspection of the containment SSC for the identification and assessment of 

defects, 

- Monitoring and/or mitigation of defects by existing, modified or new maintenance 

activities, 

- Repair defects 



33°3 Annual Conference of tlx CanaclianNtzlear Society 2012 An 10 —June 13 

360 Annual CNSICNA Student Confereiree TCU Place, Saskatoon, Saskatctewert 

► 

raga 1: 
Pmeram 

develsomat and 
coleceling 

Inlearsika 

.earnorraelon 
attics:cc ee 
ce--orre outrae. HReNex ct av:Ise: 

Oxurenil, rstectra 
mane-ante ecertto 
OM OPE% 

 H Mx corearreni 
coverlet tenry Set to Sc 

iractO 

ecl ?Zeal OS& 
Itomslti ce.0eVrk 

Oellt dirges. 
tstyles nslerat 

enactment re,e cifto:, 
anti Ir.13 

larley 
Cegalsicr. 
merans-s 

wee ma 550 

Steps 
Dee•S 

mossomesi 

ebpe 
Way and 

InSate °caftan, 
ntIsiOng nits 

SSC 
cal:poise 
as a its? 

► 
Era neon"; stew - re 

,co*,s

• zy rosetiti ate: eV SSC 

Dere acteotataty [Mule 
4.bee[ :mead 

he

isetr)./.3X.Y1121 
Nes: re SSC 

• 

Yes 

Peerm ce-eral 
• ,.sj 1-cx,ice 

emsol:n a Itt 7r.cfgaz an: 
rte . =to-a, I-toe:non:ern 

. a  emenler 
 retylls 
recur"' 

ho 

I g o 

Ye: 

eltre a: vile: es 
cleveze, 

!marryrents 

V

IlenNy. rote re 
perm tarecbt,
rrelpro tom 4-

Ab 

• 

Delta 
Waite 

erit -  Staled 
1,:xcIrsP.ivellafteer 

L eve 1.2 altIS 
(me sessile 1014111* 

oteSete 
SSC 

rte oe It tett as ri:Mt FE rt,en: 
moat. va%IcatM 31 arc ,,S3...4 at 

Azte:Irref.. :S nzrxeltx 
►r SSC tet av cu. csr"FE 

Yet 1 %recce mote 
Lee, 

l T l 

J:e V, re - czl 
vars.: 

Ted

Ratite 
  mAtama 

LITtscultie 

Fanuable-

r  Yr 

4114, 111:azil - orren, eclfales 
a' vowel 

Tem 
ware, 
grit routs 

Marra riersfete 0, ark 
41 .1:03115:3 reatemeM are

4.ts.  I: 

T 

Ccernaed 'Hearty Assessmerol 
raves reacts reirttaSsesSe) 

Alluar =porn repot 
Sale, Heath Rept 

Vol ficatIr: cr 
re swam 
va.rel 

AMP renes. set 
mselemerl.0:ally 
souffle resit.. 

Kee re ore. - t 
omen, 

4 

Legend 
Ere n etc re tat,: 

ince:I on 243 

Downed:Pon 
S 

Sacettlemstal 

StmeiltS rode, 
devekped by HO 

Min Sages 

Figure 1: High level flowchart of the concrete containment aging management program at the 
G-2 NPP 
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Record keeping 

Continued integrity assessment 

Trend assessment. 

The AMP flowchart is depicted in Figure 1. It also shows the integration of the numerical model 
into the program which is a novel approach in the nuclear power industry in Canada. The 
proposed process relies to a similar four stage approach depicted in [COG, 2009]. Meanwhile, it 
has been significantly modified in order to take into account G-2 specific needs. The AMP shown 
in Figure 1 is designed as a living process. 

The program developed an approach where it uses four levels of inspection, monitoring and 
assessment regarding the concrete containment structure as a part of the entire AMP depicted in 
Figure 1: 

1. Visual inspections 

2. Instrumentation and non destructive evaluation (NDE) 

3. Sampling and destructive evaluation 

4. Structural integrity evaluation and use of the numerical model based on finite elements. 

Detailed flowchart regarding four levels of inspections is shown in Figure 2. 

In general, the first three levels of inspection are widely applied in the nuclear power industry 
managing concrete aging issues with frequent and well known degradation mechanisms. The 
fourth level proposed in the G-2 AMP is a novel approach. It is aiming at particularly addressing 
AAR issue through an accurate prediction of behaviour of structures under the impact of AAR. 
Such information is of a great value in defining corrective and mitigating measures. In our 
opinion, numerical simulations are not necessarily required for concrete containment structures in 
the absence of AAR although it may be valuable as a decision-supporting tool. 

Data collected in the first three levels of inspection and monitoring serve as input into numerical 
model for its calibrations. Thus, it will integrate latest inspection data enabling more accurate 
predictions of the reactor building (RB) behaviour (potential displacements and crack network 
propagation which could affect RB air tightness) through a decrease of modelling uncertainty 
(epistemic and aleatory). 

33
rd

 Annual Conference of the Canadian Nuclear Society 

36
th

 Annual CNS/CNA Student Conference 

2012 June 10 – June 13 

TCU Place, Saskatoon, Saskatchewan 

 

- Record keeping 

- Continued integrity assessment 

- Trend assessment. 

The AMP flowchart is depicted in Figure 1. It also shows the integration of the numerical model 

into the program which is a novel approach in the nuclear power industry in Canada. The 

proposed process relies to a similar four stage approach depicted in [COG, 2009]. Meanwhile, it 

has been significantly modified in order to take into account G-2 specific needs. The AMP shown 

in Figure 1 is designed as a living process. 

The program developed an approach where it uses four levels of inspection, monitoring and 

assessment regarding the concrete containment structure as a part of the entire AMP depicted in 

Figure 1: 

1. Visual inspections 

2. Instrumentation and non destructive evaluation (NDE) 

3. Sampling and destructive evaluation 

4. Structural integrity evaluation and use of the numerical model based on finite elements. 

Detailed flowchart regarding four levels of inspections is shown in Figure 2. 

In general, the first three levels of inspection are widely applied in the nuclear power industry 

managing concrete aging issues with frequent and well known degradation mechanisms. The 

fourth level proposed in the G-2 AMP is a novel approach. It is aiming at particularly addressing 

AAR issue through an accurate prediction of behaviour of structures under the impact of AAR. 

Such information is of a great value in defining corrective and mitigating measures. In our 

opinion, numerical simulations are not necessarily required for concrete containment structures in 

the absence of AAR although it may be valuable as a decision-supporting tool. 

Data collected in the first three levels of inspection and monitoring serve as input into numerical 

model for its calibrations. Thus, it will integrate latest inspection data enabling more accurate 

predictions of the reactor building (RB) behaviour (potential displacements and crack network 

propagation which could affect RB air tightness) through a decrease of modelling uncertainty 

(epistemic and aleatory). 



33rd Annual Conference of the Cansrlian Nuclear Society 2012 June 10 — June 13 

3e Annual CNS/CNA Student Conference TCU Place, Saskatoon, Saskatchewan 

Detailed inspection 
flowchart 

(ref. AMP Flowchart) 

CLevel 1 

Higher level 
of monitoring 

Visual inspecticn of SSC 
Identify defects 

(Level 2 --- Instrumentation and non-destructive 

 -1  examination 
..., 

Analysis & reporting 
Return to the AMP 

Higher level 
of monitoring 

required? 

Level 3 

tailed structu 
analysis 

required? 

Analysis & reporting 
Return to the AMP 

Sampling and destructive 
examination 

o Analysis & repoling 
Rehm to the AMP 

Level 4 Detailed structural analysis using 
numerical model based on finite 

elements 

Analysis 8, reporting 
Return to the AMP 

Figure 2: Four level detailed inspection and monitoring program activities 

The development and implementation of the AMP at G-2 is designed in three phases: 

1. Aging Management Program design 

2. Implementation and inaugural inspection 

3. Integration of AMP into plant organisational structure and program application 
and maintenance 

The relevant governing documents, tools and procedures have been elaborated. Certain works are 
in preparation or ongoing (procedure/tools development, procurement and installation of 
instrumentation for NDE, personnel training etc). 
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The criticality of the containment SSC is basically determined using approaches defined in 
INPO/WANO AP-913 Equipment Reliability Process and [INPO, 2007]. 

The AMP organisational structure takes into consideration the G-2 organisation with defined 
roles and responsibilities. Figure 3 depicts a general organisational scheme. 

Drector 
NUCLEAR 

PRODUCTION -
HYDRO-QUEBEC 

Responsability 
- AMP approbaton 

Manager 
TECHNICAL SERVICES 

DEPT. 

Responsability 
- Approbation and 
implementation of 
prooessus. procedures and 
methods to perform the 
AMP. 

Manager 
NUCLEAR POWER 

PLAN (NPP) 

Responsability: 
- Exploit the NPP by 
respecting the requirements 
in regard with DRP-I4. 

Responsability: 
Manager - Execute activities in regard 

CONVENTIONAL 
Manager 

ENGINEERING DEPT.
Manager 

EXPLOITATION 
with DIMES. DT. FEP; 

SYSTEMS DEPT. 

Manager 
SAFETY 8 Manager Manager 

AUTORISATION  SUPPORT SYSTEMS PERIODIC INSPECTION  
ANALYSES 8 REABILITY DEPT. DEPT. 

DEPT. 

Responsabilities : 
Communication vmh SYSTEM ENGINEER / 

CNSC: 
Performe analysis : 
Prepare OPEX report. 

PROGRAM LEADER - 
Implementation, Application 

and perform the AMP - 

Perform inspectons in 
regard with 

Period. Inspection 

Containement SSC in regard 
with CAN/CSA N287.7-08 

Program NM-3.47 

Responsabilities : regard with CANICSA N287.7) 
- Produce 8 prepare the Pl. PER DT ; 
- Elaboration and manage implementation of AMP ; 
- Production Of BSS : 
- Update OPEX report: 
- Data collection : 
- Integration of data from NM 3.47 in AMP : 
- Prepare inspections schedule : 
- Perform inspections : 
- Produce SSC cacao:7r of service report : 
- Perform formation et quatficaton of the inspectors 
and manage personnel inspector folders : 
- Analyse inspection and analyse data : 
- Verification and qualification of instruments and 
inspections methods : 
- Development of tools ans procedures to perform 
inspection : 
- Prepare an annual inspection report 

Responsabilities : (in regard with CANICSA N285.5) 
- Produce 8 prepare Pl. FEP. OT: 
- Data collecton : 
- Prepare inspections schedule : 
- Perform Inspections 
- Perform formation et qualficaton of the inspectors and 
manage personnel inspector folders:
- Analyse inspection and analyse data : 

Venficaton and qualification of instruments and 
inspections methods : 
- Development of tools ans procedures to perform 
Inspection : 
- Supply inspections results to autorized Inspection 

Figure 3: Organisational structure of the G-2 concrete containment AMP 

Commurecacon lint 
Iverarow Int 

OEFINMON / Acronym 
AMP: Ageing imnegemem Program 
• : System conation Assessment 
CNSC : canner Nuclear sarey. 
COMPIISSIOP 
CSA : Canadan Slarit*RIMSCCMIXII 
ORP Direcilve 
OT : Wore Oroer 
PEP Preventive IPIpet:1011 Cat 
OPEX : operaecn EXpelenCe 
PI: PIOCKIVeS & nem.ction 00ClaTent 
PIMES : Innen." procedures 

33
rd

 Annual Conference of the Canadian Nuclear Society 

36
th

 Annual CNS/CNA Student Conference 

2012 June 10 – June 13 

TCU Place, Saskatoon, Saskatchewan 

 

The criticality of the containment SSC is basically determined using approaches defined in 

INPO/WANO AP-913 Equipment Reliability Process and [INPO, 2007]. 

The AMP organisational structure takes into consideration the G-2 organisation with defined 

roles and responsibilities. Figure 3 depicts a general organisational scheme. 

 

Figure 3: Organisational structure of the G-2 concrete containment AMP 



33rd Annual Conference of the Canadian Nuclear Society 2012 June 10 — June 13 

36th Annual CNS/CNA Student Conference TCU Place, Saskatoon, Saskatchewan 

5. Technical Basis of the Numerical Model Integrating AAR Impact at 
G-2 NPP 

5.1 General Characteristics and Technical Basis 

This section describes both the technical and mathematical basis of the concrete containment 
numerical model based on finite elements introduced above, which is an integral part of the G-2 
concrete containment AMP (see Figures 1 and 2). 

The material properties of the containment structures at the G-2 NPP evolve with the age of the 
plant due to environmental influences as well as various chemical processes. 

The main source of chemically triggered degradation at G2 concrete and reinforced concrete 
structures is the alkali-aggregate reaction (AAR). The product of the reaction is a gel that forms 
around the aggregate particles; it imbibes water from the pore fluid and expands triggering a 
progressive damage of the material. The rate of expansion depends primarily on the available 
alkali content of concrete. Other factors influencing the kinetics of the reaction are the relative 
humidity, temperature and the confining stress. 

In order to adequately describe the behaviour of reinforced concrete affected by AAR a finite 
element model of the reactor building is developed. The analysis is conducted by employing a 
non-linear continuum theory that incorporates a chemo-mechanical coupling. 

In this approach, the reinforced concrete is considered as a composite medium comprising the 
concrete matrix and a set of families of reinforcement. The overall macroscopic behaviour is then 
defined by employing suitable averaging procedures. In the framework employed for the analyses 
of G2 structures, the concrete is assumed to be strengthened with two orthogonal sets of 
reinforcing steel bars as is in general the case for G2. 

The formulation addresses the main stages of the deformation process, i.e. a homogeneous 
deformation mode as well as that involving localized deformation, associated with formation of 
macro-cracks. In the former case, i.e. prior to cracking, the problem is formulated by invoking a 
volume averaging procedure. After the onset of localization, the representative volume 
incorporates the fractured zone and the adjacent 'intact' material, both reinforced with steel bars. 
In this case, the stiffness of the reinforcement network and the criterion of yielding are both 
assessed in a discrete sense, by considering the bending characteristics of individual bars rigidly 
embedded in the adjacent intact material. 

The concrete itself is assumed to suffer from continuing alkali-aggregate reaction. The 
mathematical description of the effects of the reaction is based on chemo-plasticity and invokes 
the assumption that the formation of expansive phases results in progressive degradation of both 
strength and deformation properties of the material. The governing constitutive relations have 
been incorporated in a finite element code. 

5.2 Mathematical Formulation of the Numerical Model Describing AAR 

The specific form of the constitutive relation for describing the AAR-affected reinforced concrete 
is elaborated in the report by Gocevski & Pietruszczak (2011), as well as in the recent paper 
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submitted for publication in CJCE by Pietruszczak, Ushaksaraei and Gocevski (2011). In this 
approach, the material is treated as a composite medium comprising the AAR-affected concrete 
matrix (m) and two orthogonal families of reinforcement (sets 1 and 2, respectively). 

For concrete matrix, the formulation incorporates a scalar parameter C which is a measure of the 

continuing reaction and is defined as 

4-(t)=e ( _t) ; E=e (t —>00) (1) 
E 

Here, E (t) is the volumetric expansion of concrete and E is a material parameter that defines the 

maximum value of E , for a given alkali content, in the stress free state. The evolution law is 
assumed in a simple linear form 

4; = AC — 4-) for t to C =C (1— e-r("°) ); C = 0 for t < to (2) 

where 4 is the state variable associated with the chemical equilibrium, y is a material constant 

describing rate of the reaction, and to is the initiation time. 

The value of 4 depends, in general, on the confming pressure, temperature and relative 

humidity. 

The formulation of the constitutive relation that governs the chemo-mechanical interaction 
follows the framework established in an earlier article by Pietruszczak and Gocevski (2002). 
Following a standard plasticity procedure, the constitutive relation can be obtained as 

t= no  +re; r.b+ 1 
H 

of aQ = a 1 of ag• 
(3) 

rce1G+
a4- a G a4-

+ 1 E8
H a4- a G 3 

where 

1 aQi 
(a a 
af I. 

H= 

( of •y, aQ
(4) 

EcNce]+ 
H a 

a aEl' j aa 
In the equations above, f is the yield function, [C] is the elastoplastic compliance operator, H is 
the plastic hardening modulus and 8 is the Kronecker's delta. 

For reinforced concrete, the problem is formulated in two stages (Pietruszczak & Winnicki 2003; 
Pietruszczak, S., & Gocevski, 2002). Stage I deals with the homogeneous deformation mode prior 
to cracking of the concrete matrix, whereas stage II involves a localized deformation associated 
with formation of macro-cracks. 

• Stage I (prior to cracking) 

The problem is referred to the frame of reference x*, such that x*2 and 4 are along the axes of 

reinforcement (Figure 4). 
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In the equations above, f is the yield function, [C] is the elastoplastic compliance operator, H is 

the plastic hardening modulus and δ is the Kronecker’s delta.  

For reinforced concrete, the problem is formulated in two stages (Pietruszczak & Winnicki 2003; 

Pietruszczak, S., & Gocevski, 2002). Stage I deals with the homogeneous deformation mode prior 

to cracking of the concrete matrix, whereas stage II involves a localized deformation associated 

with formation of macro-cracks. 

 Stage I (prior to cracking) 

The problem is referred to the frame of reference x
*
, such that 
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reinforcement (Figure 4).  
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Figure. 4. Schematic representation of the composite medium (Stage I): local (x*) and 
global (x) coordinate systems 

The average macroscopic stress/strain rates for the composite body are defined through the 
volume averaging procedure (Hill, 1963), i.e. 

. * .* .* .* 
a = Thai + 772452 + ( 1  — 711 — 172 ) Crm ; C = 771; + 172C2 + (1— Th — ROC.: (5) 

where RI and 72 represent the volume fractions of the respective sets of reinforcement, whereas 

ak, Ek (k = 1, 2, m) are the averages of stress/strain rates in the constituents involved. Both these 

local fields are assumed to be homogeneous within themselves. The reinforcing steel is 
considered to be an elastic—perfectly plastic von Mises material obeying an associated flow rule, 
while the behaviour of concrete matrix is governed by eq.(2). 

The macroscopic constitutive relation can be established as 

* = [C*]d* -P[C*]r*4; ; [C*]=1/71[C;IBIFF/72[C;][B2N1-771 -772)[C:E n][B,n]}; 

[C* ] = WI [C7 ] [Bi ] + 772 [C2 ] [B2 ] + (1 — rh — 772 )([C:][Bm]+ U1) I 

Here, [e]'s are the compliance matrices and the details on the specification of operators [B] and 

[B] , that are defined by imposing some explicit kinematic constraints, are provided in 

Pietruszczak & Winnicki (2003). 

(6) 

Apparently, the macroscopic stress/strain rates can be transformed to an arbitrarily chosen global 
Cartesian system by following the standard transformation rules. 

The above equation defines the response of the composite prior to formation of macro-cracks in 
the concrete matrix. In reinforced concrete structures, the cracking is typically associated with the 
tensile stress regime. Once a macro-crack forms, the formulation of the problem follows the 
procedure outlined below. 
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Figure. 4.   Schematic representation of the composite medium (Stage I): local (x
*
) and 

global (x) coordinate systems 

 

The average macroscopic stress/strain rates for the composite body are defined through the 
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• Stage II (after formation of a macro-crack) 

The representative volume of the material comprises now the 'intact' reinforced concrete 
intercepted by a macro-crack of a given orientation n (Figure 5). The latter represents a composite 
medium within itself as it consists of a zone of fractured concrete reinforced with steel bars. A 
volume averaging procedure can be used again for specifying the macroscopic rates, i.e. 

= p ioi p f  ; t= p it i p f t f  (7) 

Here, i refers to the intact material outside the localization zone, f denotes the material in the 
fractured zone and p's represent the corresponding volume fractions. 

Zone 
Affaiblie 

Figure 5: Schematic representation of the composite medium (Stage II): local base 
x' associated with the fractured zone 

All quantities are referred to the global coordinate system x. The strain rate in the fractured zone 
can be expressed in terms of velocity discontinuities k . The constitutive relations governing the 

average macroscopic response of the composite is be defined as 

C =  ([C] 1u[N] [ICT1 [Ar]T)o+ [01'4" (8) 

Here, [K] is the stiffness of the fractured zone and p = p f l h represents the ratio of the area of 

the fractured zone to the representative volume of the sample. Thus p is, in fact, independent of h. 

The approach outlined above requires an assessment of the mechanical properties of the fractured 
zone, viz. operator [K]. This zone is composed of the damaged concrete and the network of 
reinforcement. The details on the description of mechanical characteristics are provided in the 
article by Pietruszczak & Winnicki (2003). 

The particular formulation employed here to describe the nonlinear behaviour of concrete matrix 
is similar to that outlined by Pietruszczak et al. (1988). It invokes a non-associated flow rule and 
the yield surface is expressed in a functional form: 
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All quantities are referred to the global coordinate system x. The strain rate in the fractured zone 

can be expressed in terms of velocity discontinuities g . The constitutive relations governing the 
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the yield surface is expressed in a functional form: 
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crc= 

fc
2a2

(9) 

In the equations above a's are material constants normalized with respect to axial compressive 

strength ( j2)1/2, 0 = sin-i (34 J 3 / , fc); I =-1.1,6- = ) where I1 and (./2, ./3) are the basic 

invariants of the stress tensor and stress deviator, respectively. The degradation of strength 
properties is governed here by the variable a (4") . In general, all degradation functions, for elastic 

module as well as strength, are assumed in a simple linear form 

E =E0[1—(1—B1)4]; v =v0[1—(1— B2)4]; a =1— (1— B 3 (10) 

where B's are material parameters. Finally, in the simulations presented below, the parameter 

c is taken as a function of the confining pressure only, and its evolution is described via an 

exponential form 

=e 
(-17'( 3)) 

3 f c

where Al is a material constant. 

The material model was verified by simulating the results of a series of laboratory tests performed 
by Pang & Hsu (1995) and Vecchio & Collins (1982). The experiments involved testing RC 
panels in pure shear with different reinforcement ratios and different concrete strength. 

The constitutive relation was incorporated in the finite element code COSMOS/M and a number 
of boundary value problems were solved in order to validate the numerical procedure (see Pande 
& Shin, 2003). In particular, large scale laboratory tests conducted by Mitchell, Hunzinger & 
Cook (2002) were simulated and the results compared. 

Damage assessment is based on the value of BETA (0) defined as: 

13 = / (h(0 )o c ) 

in which 6 and 0 are functions of the invariants of the stress deviator and cT-c designates the 

maximum value of Cr corresponding to a given stress and 0=h- G. 

From laboratory testing of samples extracted at the Beauharnois power plant, it was observed that 
for values of the Stress Intensity Factor (0) obtained from the analysis it may be concluded: 

(12) 
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invariants of the stress tensor and stress deviator, respectively. The degradation of strength 

properties is governed here by the variable ( )  . In general, all degradation functions, for elastic 

module as well as strength, are assumed in a simple linear form 
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where 1A  is a material constant. 

The material model was verified by simulating the results of a series of laboratory tests performed 

by Pang & Hsu (1995) and Vecchio & Collins (1982). The experiments involved testing RC 

panels in pure shear with different reinforcement ratios and different concrete strength.  

The constitutive relation was incorporated in the finite element code COSMOS/M and a number 

of boundary value problems were solved in order to validate the numerical procedure (see Pande 

& Shin, 2003). In particular, large scale laboratory tests conducted by Mitchell, Hunzinger & 

Cook (2002) were simulated and the results compared. 

Damage assessment is based on the value of BETA (β) defined as: 
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13 < 1.0 corresponds the stable strain hardening stress states and no 
mechanical damage in this local area for 13 < 0.6 (Ref Beauhamois) 

- 1.0 > 13. > 0.6 describes the deformation mode associated with 
formation of micro cracks in strain hardening regime. For 13 > 0.9 dense 
micro cracking is observed (Ref. Beauhamois) 

- 13 > 1.0 corresponds the failure mode associated with the formation of 
macro cracks in the unstable strain softening regime. 

It needs to be emphasized that the commercially available finite element codes are not, in general, 
adequately equipped to address the complexity of the problem. In particular, they lack elaborated 
constitutive relations for dealing with the description and the evolution of complex material 
properties. 

Examples of application of the numerical model at G-2 NPP in analyzing the reactor building 
behavior are presented in the next section. 

5.3 Application of the Numerical Model in the analysis of the AAR-affected 
reinforced concrete at Gentilly-2 NPP 

In order to assess the current stress/deformation state and to identify the aging mechanisms 
which may impair proper functioning of a nuclear power plant, an elaborate structural analysis 
including numerical simulations of various aging/degradation mechanisms was carried out 
(Gocevski 2003; Gocevski & Gdela 2011). With a step by step simulation the concrete behaviour 
for the entire operational life span of the power plant was analysed. The obtained results are in 
accordance with the finding of numerous in-situ measurements and conclusions of several 
inspections for the period from the plant construction in 1976 up until today (2010). In order to 
predict the future effect of concrete degradation to the structural behaviour of the power plant 
structures the simulations were extended for the period of the next 25 years (up to 2035). 
Therefore, the model is able to predict degradation of the AAR affected concrete from the time of 
the plant construction up until the plant decommissioning. This future of the numerical analysis 
make the numerical model suitable for its incorporation in the Aging Management Program 
(AMP) of the concrete containment structure developed for the G-2 NPP. The primary objective 
of the AMP is to ensure that the requirements of CSA Standard N278.7-08 are met and will 
continue to be met for the period through which the structure will remain operational. 

The analyses were conducted in the non-linear static and dynamic range and examined the 
effects of crack propagation induced during the construction stage, the loss of prestressing, 
swelling of concrete due to alkali-aggregate reaction, as well as initiation/propagation of cracks 
due to imposed temperature gradients and seismic loads. The 2003 studies concluded that 
swelling of concrete due to alkali-aggregate reaction is the potentially most damaging aging 
mechanism. Therefore, with the recent studies of 2010 and 2011 more emphasis was directed 
toward defining long term effects of AAR concrete swelling on present and future safe 
performance of the reactor building. In particular the following was studied in details with the 
enhanced 2003 numerical model: 

- The propagation of cracks (now penetrating, on average, about 100mm into the 
containment walls) and the changes of pre-stressing over time, 
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The possibility for formation of concrete splitting cracks in the plane of the post-
tensioning cables due to degradation of tensile strength of the concrete affected by the 
AAR, 

The ultimate pressure capacity (UPC) and the air tightness of the reinforced concrete 
envelope and the spent fuel exchange room, 

The spent fuel storage pool and the spent fuel exchange room under self-weight, 50 years 
of continuing AAR, and seismic load typical for the region of Gentilly-2 NPP 

In the paper only the results describing the aging of the pre-stressed concrete of the containment 
building will be presented and discussed. 

The air tightness and the ultimate pressure capacity are directly affected by the formation and a 
slow propagation of micro and macro cracks through the concrete walls of the containment 
structures. For uninterrupted and safe operation of the power plant it is important to predict the 
time-history of their occurrence and penetration in order to assess the need for implementing 
some remedial measures to maintain the air tightness of the building, as imposed under the safety 
requirements of the Canadian Commission of Nuclear Safety (CCNS). The structure geometry 
and its finite elements discretisation are shown in Figure 6, was analyzed using the constitutive 
model for AAR-affected reinforced concrete, as discussed earlier. The material properties are 
presented in Table 1. 
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Figure 6: Containment building: (a) cross-section and (b) FE Discretization 

An important component in determining the state of the structure at the present time and in the 
future (year 2035) is the evaluation of the rate of free expansion in concrete. This has been 
assessed based on the results of some laboratory tests as well as the strain measurements obtained 
from the strain gages placed in concrete during the construction of the containment. 
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Concrete Elastic Properties E = 34.5 GPa; u = 0.2 

Concrete Compressive Strength 
(nominal) 
(actual) 

fro = 35 MPa 
f2035 = 58 MPa 

Concrete Tensile Strength 
(nominal) 
(actual) 

fto = 2.72 MPa 
f2035 = 1.5 MPa 

Post-tensioning 1.06 nominal 

Reinforcement E=200 GPa; u = 0.3; a y = 400 MPa 

The perimeter wall has circumferential post-tensioning tendons and vertical tendons while the 
upper dome consists of three layers of superimposed tendons, the latter placed in such a way that 
the tendons form spherical equilateral triangles. The equivalent initial compressive stresses in the 
concrete sections were evaluated based on spacing of the cables in the structural elements. The 
average values were estimated as: 10.7 MPa for the two perpendicular principal components in 
spherical plane of the superior dome, 5.9 MPa for circumferential and 3.5 MPa for vertical 
direction of the wall, and finally 4.4 MPa and 2.3 MPa for the inferior and superior part of the 
ring beam, respectively. 

The results describing the response of the structure under own weight, post-tensioning, and the 
continuing AAR are shown in Figures 7-12. Figure 7 present the distribution of damage 
factor, fi , at the time after the construction and before the AAR effects were manifested. Figures 

8 to 12 presents the distribution of damage factor,fi , after 12, 17, 25, 35 and 50 years of ongoing 

reaction. 
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Figure 7: Distribution of coefficient/3 due to self-weight and post-tensioning after the 
construction of the plant 
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Figure 8: Distribution of coefficient of deterioration 13 due to self-weight, post-tensioning 
and after 12 years (1997) of combined AAR and creep effects 
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Figure 7:  Distribution of coefficient b due to self-weight and post-tensioning after the 

construction of the plant  
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Figure 8:  Distribution of coefficient of deterioration b  due to self-weight, post-tensioning 

and after 12 years (1997) of combined AAR and creep effects  
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Figure 9: Distribution of coefficient of deterioration fi due to self-weight, post-tensioning and 

after 17 years (2002) of combined AAR and creep effects 
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Figure 10: Distribution of coefficient of deterioration - due to self-weight, post tensioning 
and after 25 years (2010) of combined AAR and creep effects 
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Figure 9: Distribution of coefficient of deterioration b  due to self-weight, post-tensioning and 

after 17 years (2002) of combined AAR and creep effects 
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Figure 10: Distribution of coefficient of deterioration  due to self-weight, post tensioning 

and after 25 years (2010) of combined AAR and creep effects 
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Figure 11: Distribution of coefficient of deterioration n due to self-weight, post-
tensioning and after 35 years (2020) of combined AAR and creep effects 
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Figure 11:  Distribution of coefficient of deterioration  due to self-weight, post-

tensioning and after 35 years (2020) of combined AAR and creep effects  
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Figure 12: Distribution of coefficient of deterioration n due to self-weight, post-
tensioning and after 50 years (2035) of combined AAR and creep effects 

Note that the values of fi > 1 are indicative of an unstable response associated with formation of 

macrocracks. The results indicate the presence of a damage zone, which at some locations 
penetrates through the entire thickness of the wall. However, the macrocracks are not more than 
0.35mm wide. 

Figure 13 shows the displacements at the junction of the base slab and the wall of the 
containment building. The restrain of the structural elements due to the post-tensioning influences 
the concrete swelling. The swelling of the base slab is more extensive than the expansion of the 
wall because the equivalent initial compressive stresses in the concrete slab, evaluated based on 
the post-tensioning, is lower than the one in the walls. The confinement building was not 
designed to accommodate this difference in the expansions. Hence, the multiple vertical cracks 
were observed at the junction of the wall and the base slab which were also precisely predicted 
with the numerical analysis. 
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Figure 12: Distribution of coefficient of deterioration  due to self-weight, post-

tensioning and after 50 years (2035) of combined AAR and creep effects  
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the concrete swelling. The swelling of the base slab is more extensive than the expansion of the 

wall because the equivalent initial compressive stresses in the concrete slab, evaluated based on 

the post-tensioning, is lower than the one in the walls. The confinement building was not 

designed to accommodate this difference in the expansions. Hence, the multiple vertical cracks 
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Figure 13: Displacement in resultant direction (deform factor = 150) at (1) G+PT-1985, (2) 
after 12 years of AAR (1997), (3) 17 years (2002), (4) 22 years (2007), (5) 25 years (2010), (6) 
35 years-2020, and (7) 50 years (2035) 

The possibility of concrete splitting (delaminating) in the planes of post-tensioning was observed 
in the evaluation of existing pre-stressed structures (Gocevski, 1993, 2000). The elevated two 
directional post-tensioning, producing 14.9 MPa compressive stresses in relatively thin section of 
"voussoir en tete" in the main cantilever roof beam of the Montreal's Olympic stadium, was 
responsible for creation of multiple parallel splitting in the wall of the hollow beam. The 
potential of concrete splitting in the walls of the containment structure may occur as a result of 
constant reduction of the tensile strength of the AAR affected concrete. Figure 14 shows tensile 
stresses of 1.0 to 1.5 MPa in the radial direction of the walls. The preliminary analysis shows that 
the concrete tensile strength might decrease to a value of 1.5 MPa by the year 2020 as a result of 
AAR. Therefore, there is a likelihood of concrete splitting (delaminating) in the wall of the 
containment building before the end of the second life of the power plant. The concrete splitting 
in the planes of post-tensioning would be expected to occur in the wall around the combustions 
transfer tunnel (detail A in Figure 14) and in many other areas of the wall in the containment 
building as indicated by the details B, C and D of Figure 14. 

Meanwhile, it should be stressed that the stage of the AMP implementation also involves a 
detailed exceptional and inaugural analysis where questions raised in previous studies and 
discussed above will be thoroughly examined and answered. The operating experience (such as 
from Crystal River NPP regarding their issues with the reactor building concrete splitting; US 
NRC, 2011) will also be taken into consideration. There is a high level of confidence that the 
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AMP at G-2 will successfully manage all those issues and other which might arise during the 
second lifecycle of the plant. Hydro-Quebec has necessary expertise and tools for responding to 
those challenges through a structured process in a systematic way. 
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Figure 14: Stress in radial direction at horizontal section at elevation 4.22 m from the base slab 
due to self-weight, post-tensioning and after combined AAR effects in the concrete 
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Figure 14:  Stress in radial direction at horizontal section at elevation 4.22 m from the base slab 

due to self-weight, post-tensioning and after combined AAR effects in the concrete  
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6. Conclusions 

The Aging Management Program of the concrete containment structure developed for the G-2 
NPP as a part of preparation of the refurbishment project takes into consideration all the relevant 
degradation mechanisms. It particularly focuses on Alkali-Aggregate Reaction (AAR) as a 
mechanism which is not well known in the nuclear power industry. The AMP defined a four level 
approach in inspecting, monitoring and assessing the containment structure: a) visual inspection, 
b) instrumentation and non destructive examination, c) sampling and destructive evaluation and 
d) structural analysis using a numerical model based on finite elements. The fourth level is 
especially developed for dealing with the AAR issue. It is a novel approach where the numerical 
model, as a powerful tool helping decision-making, is integrated into the whole AMP in a 
structured manner. It is a living process where results of the first three levels of inspection 
provide inputs for the numerical model and its calibration. It enables an accurate prediction of 
behaviour of the concrete containment structure under impact of the relevant degradation 
mechanisms including AAR. Such an approach allows better defining corrective and mitigating 
actions while required. The designed AMP provides a reasonable assurance of an adequate 
aptitude of the G-2 concrete containment structure in fulfilling its safety function during the 
second life cycle of the plant. 
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b) instrumentation and non destructive examination, c) sampling and destructive evaluation and 

d) structural analysis using a numerical model based on finite elements. The fourth level is 

especially developed for dealing with the AAR issue. It is a novel approach where the numerical 

model, as a powerful tool helping decision-making, is integrated into the whole AMP in a 

structured manner. It is a living process where results of the first three levels of inspection 

provide inputs for the numerical model and its calibration. It enables an accurate prediction of 

behaviour of the concrete containment structure under impact of the relevant degradation 

mechanisms including AAR. Such an approach allows better defining corrective and mitigating 

actions while required. The designed AMP provides a reasonable assurance of an adequate 

aptitude of the G-2 concrete containment structure in fulfilling its safety function during the 

second life cycle of the plant. 
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