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ABSTRACT 

Investigations of the controls on solute transport in porewater and groundwater below the Bruce 
nuclear site involved laboratory-scale diffusion measurements, as well as measurements of 
natural tracer (6180, 62rt.'', 87

Sr/
86

Sr, Cl and Br) distributions and isotopic compositions of CH4, 
CO2 and helium (3He/4He) in the porewaters and groundwaters. The analyses were performed on 
samples collected from drilled boreholes, DGR-1 through DGR-6, during site characterization 
activities and the results are summarized below. 

With the exception of just a few samples from the Upper Silurian, the effective diffusion 
coefficient (De) values measured from DGR cores are all less than 10-11 m2/s, which is 
approximately one order of magnitude lower than measured De values from international 
programs in sedimentary rock. The majority of the data are in the range 10-13 < De < Hill m2/s, 
with Lower Silurian and Upper Ordovician shale samples representing the higher end of this 
range because of their relatively high porosity (7 to 9%). The low porosity of the Middle 
Ordovician limestone (< 2%) results in low De values, clustering in the range 10-13 < De < 10-12

m2/s. 

The 6180, Cl, and Br profiles in the Middle Ordovician carbonates define trends of decreasing 
6180 values and tracer concentrations with depth, and are interpreted to result from an extremely 
long period of diffusion-dominated transport (-300 Ma). Near the base of the Middle 
Ordovician carbonates the 62H data display a slight enrichment, which could represent upward 
diffusion of deuterium-enriched water originating in the underlying Precambrian shield. A 
Precambrian shield influence on the Ordovician porewater chemistry is inferred from the 
measured 87Sr/86Sr ratios in the Middle Ordovician carbonates, which are elevated above values 
expected for porewater in equilibrium with carbonate rock. 

The CH4 isotope data indicate the presence of biogenic gas in the Cobourg Formation and in the 
overlying Ordovician shales, while gas of thermogenic origin is present in the Middle Ordovician 
carbonates below. The fact that methane of differing origins has not mixed by diffusion across 
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the Cobourg limestone suggests that there is an effective barrier to vertical transport near the 
base of the formation. The presence of a vertical transport barrier at this depth is also supported 
by the persistence of large gradients in the isotopic composition of helium. 

The Cambrian groundwater chemistry displays a distinct reversal in the natural tracer profiles 
relative to the overlying Ordovician carbonates. The reversal in the profiles is abrupt compared 
to the gradual decline in concentrations and isotopic compositions observed with depth through 
the Ordovician carbonates. Irrespective of the mechanism(s) responsible for the Cambrian fluid 
chemistry beneath the Bruce nuclear site, however, the fundamental hypothesis that solute 
migration with the Ordovician sediments is diffusion dominated is well supported by the data. 

1. INTRODUCTION 

Hydrogeochemical studies seek to understand the nature and timing of physical and chemical 
processes that have operated to define the chemical characteristics of natural water. The term 
hydrogeochemistry refers to the chemistry of water as it is affected by a variety of chemical 
reactions with components of soil, sediment, rocks and minerals, and by various physical 
processes such as advection, evaporation and diffusion. Investigations of low-permeability 
geologic systems are limited by very low advection rates and solute velocities. Consequently, 
studies of porewater movement and solute transport in low-permeability geologic systems rely, 
in part, on hydrogeochemistry in order to elucidate 1) the age, or residence time, and origin of 
the porewater, 2) the processes responsible for observed spatial variations in porewater 
chemistry, and 3) the mechanisms controlling transport of solutes at long time frames. 

Ontario Power Generation (OPG) is proposing the development of a Deep Geologic Repository 
(DGR) at the Bruce nuclear site, situated in the Municipality of Kincardine, Ontario, for the 
long-term management of Low and Intermediate Level Radioactive Waste (L&ILW). Extensive 
hydrogeochemical analyses have been conducted as part of a multi-disciplinary geoscientific site 
characterization related to the DGR project. The multi-disciplinary approach integrates regional-
and site-scale data, including the stratigraphy and structural geology, physical hydrogeology, 
hydrogeochemistry, and paleohydrogeology of the region. 

The data presented and discussed in this paper were obtained from laboratory analysis of 
continuous core extracted from four deep diamond-cored vertical boreholes, DGR-1, DGR-2, 
DGR-3 and DGR-4, and two deep inclined boreholes, DGR-5 and DGR-6. The 
hydrogeochemical data (including 87Sr/86Sr, .313C and .32H in CH4, .313C in CO2, 6180 and 6214 in

H20, He/4He, Cl and Br) have been examined to develop an understanding of porewater origin 
and evolution. The specific objectives of this paper are: 

• to assist in identifying the residence time and origin of the porewater and groundwater; 

• to provide constraints on the processes and timing of solute transport related to the 
demonstration of DGR safety; and, 

• to develop and test a site-specific natural analogue model using geochemical tracers. 

2. BACKGROUND 

The Bruce nuclear site, situated 225 km northwest of Toronto on the eastern shore of Lake 
Huron, is underlain by an 850 m thick sedimentary sequence of Cambrian to Devonian age. The 
sediments consist of near horizontally bedded and weakly deformed shales, carbonates and 
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evaporites of the Michigan Basin. Within this sedimentary pile, the proposed DGR would be 
excavated within the low permeability argillaceous Middle Ordovician' limestone of the 
Cobourg Formation, at a depth of 680 m, and overlain by greater than 200 m of Upper 
Ordovician shale. 

The work program for site characterization is outlined in the Geoscientific Site Characterization 
Plan (GSCP; [1],[2]), which describes the surface and sub-surface activities necessary to 
determine site suitability from both the geoscientific and engineering perspectives. 

As a result of the site characterization activities, three hydrologic systems have been identified 
beneath the Bruce nuclear site: a shallow system, an intermediate system, and a deep system. 
The emphasis of this paper is the hydrogeochemical evolution of the Ordovician sediments 
within the deep hydrologic system, however, the three systems are described briefly below. 

The shallow system (hydrostratigraphic units 1 and 2 in Figure 1) occurs from ground surface to 
a depth of approximately 169.3 m and contains fresh to brackish groundwater which flows 
upward and westward toward Lake Huron. The hydraulic conductivity (Kh), determined from in 
situ hydraulic straddle-packer testing, in the shallow system ranges from 10-10 m/s in the glacial 
till overburden to 10-4 m/s in the dolostone aquifer. 

The intermediate system (hydrostratigraphic units 3 and 4 in Figure 1) extends from 169.3 to 
447.7 m depth. The system has low permeability (Kh between 10-14 to 10-10 m/s) and 
groundwater flow predominantly occurs in two thin aquifers identified at intervals of 325.5-
328.5 m and 374.5-378.6 m, in the upper Salina Al Unit (Kh of 10-7 m/s) and in the Guelph 
Formation (Kh of 10-8 m/s), respectively. Flow direction in the upper Salina Al Unit is toward 
Lake Huron, whereas flow is directed to the east, or inland, in the Guelph Formation. 

The deep system occurs between 447.7 and 860.7 m depth and includes the Ordovician and 
Cambrian sediments (hydrostratigraphic units 5 through 8 in Figure 1). The Ordovician shales 
and the Trenton Group limestones are characterized as an aquiclude (Kh in the range of 10-15 to 
10-14 m/s), the Black River Group is an aquitard (Kh of 10-12 m/s), and the Cambrian sandstone is 
an aquifer (Kh of 10-6 m/s). The low Kh values measured suggest that solute transport in the 
Ordovician sediments is dominated by diffusion. Further support for this interpretation is 
provided by the hydrogeochemical evidence presented herein. 

3. METHODS 

A variety of methods were utilized during the hydrogeochemical analyses to characterize the 
porewaters and groundwaters below the Bruce nuclear site as accurately as possible. The 
methods are summarized briefly below. 

3.1. Sample Collection 

All geoscientific activities associated with sample collection, handling, preservation and sealing, 
laboratory handling and technical report compilation were completed in accordance with the 

1 A recently published update of the Paleozoic stratigraphy of southern Ontario includes minor modifications to the terminology 
of reference ages for the strata [3]. The Middle Silurian designation has been removed and now the Upper and Lower Silurian 
are separated at the top of the Eramosa Member of the Guelph Formation. In addition, the Black River and Trenton groups now 
comprise the lower portion of the Upper Ordovician Period. Acknowledging these recent re-interpretations, the descriptions here 
still follow the main sequence stratigraphic associations of [4] and [5]. 
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GSCP and established Test Plans in order to ensure consistency in methodology and data 
reporting. 

Drill core samples were photographed, preserved by vacuum packaging (with prior nitrogen 
flushing) in the field, and then stored at temperatures below 8°C before shipping. Cores were 
shipped to the University of Ottawa and the University of New Brunswick within a few days of 
drilling, in most cases, and stored at 4°C until analysis. Core samples were also shipped to the 
University of Bern, in Switzerland, where complementary geochemical and lithogeochemical 
analyses were performed. 
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Figure 1. Stratigraphic column showing hydrostratigraphic units at the Bruce nuclear site. 

3.2. Groundwater and Porewater Characterization 

Stable isotopes of I-120 (b180 and 62H) were measured at the University of Ottawa by isotope 
ratio mass spectrometry on water extracted from crushed core samples using vacuum distillation 
at 150°C for 6 hours [6],[7]. Verification testing was performed at the University of Ottawa 
using variable temperatures and extraction times to ensure that incomplete water yield and 
isotopic fraction effects were minimized in the vacuum distillation process [8]. 

The hydrogeochemical characteristics of groundwaters were obtained by direct sampling 
[9],[10]. In the case of porewaters, a leaching/extraction technique was used in which the dried 
rock samples remaining after vacuum distillation were leached with distilled water. The mass of 
solutes leached was normalized to the water content of the individual samples determined during 
distillation in order to determine concentrations [6],[7]. Cl and Br (DGR-2 only) were measured 
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by ion chromatography; Br from DGR-3 and DGR-4 was measured by inductively coupled 
plasma mass spectrometry (ICP-MS). 

The extraction of CO2 also accompanied the vacuum distillation process. The CO2 released from 
the rock during heating was trapped with water vapour at liquid N2 temperature. Following 
vacuum distillation, samples were removed from the line and warmed to release the condensed 
CO2, which was then analysed to determine both the concentration and the 613C composition 
using a Finnigan MAT Delta XL continuous flow mass spectrometer interfaced with a gas 
chromatograph (GC) to purify the gas. 

Methane was extracted from rock cores by placing approximately 130 g of crushed core in a 
series of sealed jars and allowing the CH4 to collect in the head space over a period of seven to 
eight weeks. The initial headspace was air at atmospheric pressure, and a mass balance 
correction was made for the 2 ppm of atmospheric CH4 in air. The isotopic composition of the 
released methane was measured using a Finnigan MAT Delta XL continuous flow mass 
spectrometer interfaced with a GC to purify the gas. 

Sr isotopes were measured in groundwater, porewater and rock core samples. For the porewater 
samples, paired leaches were analyzed in deionized water, including 1) a rapid leach (-1 hour) 
and 2) an extensive leach (-60 days) to compare potential contributions from the rock matrix. 
Following leaching, the rock samples were then rinsed extensively with deionized water and 
dried. The rock samples were then crushed to powder and leached with a mild acetic acid, which 
leached Sr only from the carbonate component of the rock. Sr was then removed from the 
leachate on ion exchange columns and re-eluted for preparation on filaments for analysis by 
thermal ionization mass spectrometry (TIMS) on a Triton instrument at Carleton University. 
Whole rock analyses were also undertaken on four Ordovician core samples to assess the 
potential contribution of 87Sr from the aluminosilicate component of the rock. The samples were 
rinsed, crushed, and then dissolved in HC1. Remaining solids were dissolved in an HF/HNO3
solution which was recombined with the HC1 leachate before column extraction of Sr [11]. 

Helium isotopes were analyzed from subcore samples that were drilled in the laboratory using a 
Diamant® diamond-faced coring tool mounted on a benchtop drill press with water circulation 
system. The subcores were —3 cm long and 0.6 cm diameter. The subcores were air dried with a 
hand blower, weighed, and transferred into copper or stainless steel tubes which were evacuated 
to a rough vacuum, < 1.33 Pa. Out-diffusion experiments on the samples allowed for the 
collection of helium gas within the extraction lines, which was then analyzed for helium isotopes 
using at MAPL 25-50 noble gas mass spectrometer at the University of Ottawa [12]. 

4. RESULTS AND DISCUSSION 

The purpose of the following subsections is to highlight the usefulness of the hydrogeochemical 
data in assessing both 1) the origin and evolution of the sedimentary brines, and 2) the processes 
governing solute transport. The results and interpretation of the natural tracer analyses (Br, Cl, 
6180, 6 2H, 87,-, r ,

/
86 Sr and the isotopes of CH4 and He) are presented in the following subsections. 

4.1. Origin of Sedimentary Brines 

The brines in the Michigan Basin are considered to have formed from ancient seawater or 
evaporated ancient seawater [13],[14]. A comparison of regional data with the Cl and Br 
concentration data collected at the Bruce nuclear site suggests that the origin of the sedimentary 
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Sr and the isotopes of CH4 and He) are presented in the following subsections.  

4.1. Origin of Sedimentary Brines 

The brines in the Michigan Basin are considered to have formed from ancient seawater or 

evaporated ancient seawater [13],[14].  A comparison of regional data with the Cl and Br 

concentration data collected at the Bruce nuclear site suggests that the origin of the sedimentary 
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brines at both the regional- and site-scales is the same, and that the fluids have been modified to 
varying degrees by mixing and water-rock interaction processes [15]. Figure 2 shows a 
comparison of the regional- [16] and site-scale data for Cl versus Br concentrations, illustrating 
the consistency between the two datasets. 
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4.2. Strontium Isotopes 

Above the Guelph Formation aquifer, the 87Sr/86Sr ratios for Silurian porewater and groundwater 
at the Bruce nuclear site approach the values of the host rock and the seawater curve (Figure 3). 
The convergence demonstrates the dominance of the Silurian seawater 87Sr/86Sr signature in the 
evaporite minerals (anhydrite) and non-argillaceous limestones of the Salina units. 

Consistent with the results for Sr isotopic analysis of oilfield groundwater from the Michigan and 
Appalachian basins [17], the 87Sr/86Sr ratios from Cambrian groundwaters and from the 
Ordovician and Lower Silurian porewaters at the Bruce nuclear site are more radiogenic than the 
Paleozoic seawater curve (Figure 3). With the exception of the Ordovician shale units, the 
87Sr/86Sr signatures of the porewater are also more radiogenic than those of the host rocks. There 
are three possible explanations for the 87Sr enrichment in the porewater: 

• ingrowth of 87Sr from 87Rb decay since the Ordovician; 

• leaching of 87Sr from shield-derived siliciclastic material in the shale and the argillaceous 
component of the limestones; and, 

• transport of Sr upward from an 87Sr-enriched brine source in the underlying Precambrian 
shield. 

Calculations suggest that the enriched 87Sr/86Sr ratios observed in the porewater of the 
Ordovician shales could be derived by ingrowth via 87Rb decay, but only if all of the 87Sr 
produced was released to the porewater, which is unlikely. Whole-rock analyses of the 
Ordovician shales indicate that they are highly enriched in radiogenic 87Sr (Figure 3), suggesting 
that leaching of 87Sr from old shield-derived silici-clastic material also contributes to 87Sr 
enrichment in the porewater. 

The Rb content of the argillaceous carbonates is too low to explain the 87Sr enrichment in the 
Middle Ordovician porewater by ingrowth alone. A combination of ingrowth and leaching of 
87

Sr from shield-derived silici-clastic material is possible, but the 87Sr enrichment that would 
result might be expected to be proportional to the silici-clastic content of the enclosing rocks, and 
therefore the degree of enrichment in the argillaceous carbonate porewater should be lower than 
in the Upper Ordovician shale porewater. The 87Sr enrichment in the porewater of the 
argillaceous carbonates is quite variable (Figure 3) but it is not significantly lower than the 
porewater 87Sr enrichment in the shales. In fact, some of the limestone porewater samples from 
DGR-3 display the same degree of enrichment as the groundwater from the underlying Cambrian 
aquifer — some of the most enriched samples in the dataset. Highly radiogenic Sr signatures have 
been measured in Canadian Shield brines, and upward transport of 87Sr from the underlying 
crystalline rock may have contributed to the observed enrichment in the Cambrian aquifer and in 
the porewater of the overlying Middle Ordovician carbonates. 

The observed 87Sr enrichment in the Ordovician likely resulted from some combination of the 
three processes described above, but the respective contributions cannot be resolved 
quantitatively. In any case, the presence of radiogenic Sr throughout the Ordovician indicates 
extremely long time periods for water-rock interaction and diffusion. 

4.3. Methane, Carbon Dioxide and Helium 

The presentation of CH4, CO2 and He data is limited to their respective isotopic compositions 
(613C in CH4 and CO2, 6211 in CH4, and 3He/4He) in porewaters from the Ordovician rocks 
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because these data provide insight regarding the origin of the CH4 and the solute transport 
processes acting on the gases. 

The .313C and .32H data for CH4 display a clear separation above and below the Cobourg 
Formation (Figure 4). This type of systematic variation has been used to distinguish between 
biogenic and thermogenic origins for CH4. The stable isotope data from CH4 have been plotted 
on the variation diagram [18] and they define two fields (Figure 5): one field with strongly 
depleted values of 613C and 6211 represents CH4 of biogenic origin in the Upper Ordovician 
shales and the Cobourg Formation, and a second field represents CH4 of thermogenic origin in 
the Middle Ordovician carbonates below the Cobourg Formation. These indications that CH4 in 
the Upper Ordovician shales and Cobourg Formation is of biogenic origin are supported by the 
813C data for CO2 (Figure 4). The CO2 residual in a system following biogenic CH4 generation 
is expected to be enriched in 613C, and the zone of enriched 813C in CO2 observed in the Blue 
Mountain Formation shale corresponds closely to the zone of biogenic CH4 formation that is 
inferred from the stable-isotope compositions of CH4 (Figure 4). 

The generation of thermogenic gas requires temperatures in excess of 70°C [19], and this 
condition has not prevailed since maximum burial in the Carboniferous, suggesting that the 
thermogenic gas is very old. The age of the biogenic CH4 contained in the Ordovician rocks is 
unknown, but it is hypothesized that the biogenic CH4 may also be ancient because the activity 
of a methanogenic archaea population may have been reduced in these rocks following 
consolidation during peak burial, which has resulted in median pore throat radii on the order of 5 
nm. The evolution to high salinity and low water activity (0.6 to 0.7) porewater also may have 
contributed to diminished biogenic activity, although the influence of such high salinity on 
biogenic activity is not yet well established. 

The separation of thermogenic gas below, from biogenic gas above, across a relatively short 
vertical distance (i.e., tens of meters), as defined by the steep gradient in the .313C and .32H 
isotope profiles, suggests that there has been very little vertical mixing. If the two types of CH4
are of ancient origin, the fact that their vertical separation has persisted over the millennia 
indicates that there is an effective vertical barrier to advection and diffusion in the stratigraphy 
below the Cobourg Formation. 

The 3He/4He data are presented as the isotope ratio in the sample (Rs) normalized to the isotope 
ratio in air (Ra) such that xRa = Ra/Ra. The data are remarkably consistent among the three drill 
cores analyzed, and define two distinct regions of differing isotope ratio separated at the base of 
the Cobourg Formation, with xRa of approximately 0.02 within and above the Cobourg 
Formation, and xRa of approximately 0.035 below (Figure 4). Consistent with observations from 
the CH4 and CO2 isotope data, the clear separation between regions of differing He isotope 
composition indicates that there has been very little cross-formational mixing of He across the 
lower contact of the Cobourg Formation. 

The steep gradients in the isotope profiles for the gases discussed above suggest that there is a 
discrete barrier to transport near the base of the Cobourg Formation where diffusion coefficients 
must be extremely low. 
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Figure 5. Discrimination diagram indicating fields for CH4 of biogenic (CO2 reduction and 
fermentation) and thermogenic origin. 

4.4. Natural Tracers 

In order to evaluate the influence of solute transport processes over geologic time, the 
hydrogeochemical investigations included the determination of aqueous species (e.g., 6180, 62H, 

Cl, Br) that could be expected to behave as natural tracers and thereby provide a basis for 
quantifying rates and mechanisms of solute transport in a manner similar to international studies 
([21],[22],[23]). 

Trends in the measured porewater and groundwater data (Figure 6) should be considered in terms 
of deviations from some initial baseline condition. For these ionic and isotopic tracers, the initial 
condition would be their respective concentrations in the porewater of the Michigan Basin rocks 
around the time when they were first deposited (see Section 4.1). Taking into account the 
knowledge that normal marine conditions were thought to exist during the Cambrian and most of 
the Ordovician, followed by restricted marine (evaporative) conditions in the Silurian and 
Devonian, an initial Cl concentration near halite saturation (approximately 6000 to 7000 
mmol/kgw) is proposed for the Silurian and Devonian fluids to represent evaporated seawater, 
and an initial Cl concentration of 600 mmol/kgw is suggested for the Ordovician and Cambrian 
formation fluids. On a plot of 62H versus 6180, it is commonly observed that the isotopic 
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composition of ancient sedimentary basin water plots to the right of and below the global 
meteoric water line. This feature has been observed for water in the Michigan Basin, and a 
review of available data ([24],[25],[13] and [14]) suggests that an initial .3180 value of 
approximately -2%0 should be representative. 

The following features are observed in the tracer data. 

• Devonian and Upper Silurian: tracer values are relatively low in the Devonian and Upper 
Silurian formations and show an overall increasing trend with depth toward the Guelph 
Formation. 

• Lower Silurian and Upper Ordovician: from the Guelph Formation downward through 
the Upper Ordovician shales, the porewater has very high salinity and relatively enriched 
6180 and 6211 values — all characteristic of evaporated seawater. 

• Middle Ordovician: there is a downward trend toward depleted 180, reduced Cl and Br 
concentrations, and a very minor enrichment in 211. 

• Cambrian: the trends in the Middle Ordovician are interrupted at the Cambrian where 
there is an abrupt increase in the tracer values. 

Devonian and Upper Silurian: The .3180 and .32H profiles in the Silurian and Devonian 
stratigraphic units provide evidence for infiltration of some combination of glacial melt water 
and warmer climate water during glacial and interglacial periods, presumably during the 
Pleistocene. The occurrence of 180- and 211-depleted water (-14.5%o and -110%0, respectively) in 
a thin aquifer at 325.5-328.5 m depth in the Silurian Salina Al carbonate unit (Figure 6) is 
indicative of the presence of glacial melt water and represents the maximum depth of glacial 
melt water infiltration observed at the Bruce nuclear site. These results are consistent with those 
for the northern margins of the Michigan Basin [26]. The cyclic nature of glacial-interglacial 
periods in the past 1 to 2 Ma [27] could have resulted in repeated infiltration events in the 
Devonian (and possibly Silurian) stratigraphy of southern Ontario. Subsequent diffusive 
equilibration between saline formation waters in the low-permeability sediments and relatively 
fresh glacial and meteoric water in the more permeable units would have occurred during 
interglacial periods. 

Lower Silurian and Upper Ordovician: The tracer values in this interval (4880 to 7868 mmol 
Cl/kgw; 27 to 49 mmol Br/kgw; 6180  from -3.9 to -1.9%o and 62H from -55.9 to -40.9%o) are 
consistent with the initial condition inferred above for the Silurian and Devonian — evaporated 
seawater with very high salinity, and .3180 and 6211 values that plot to the right of the global 
meteoric water line. Porewater that originated as evaporated seawater is expected in the Silurian 
and Devonian rocks because of the restricted marine conditions that existed in the basin at that 
time. The present-day salinity in the Upper Ordovician shales (average Cl concentration of 5800 
mmol/kgw) is much higher than the initial normal marine conditions of deposition. The 
deposition of Upper Silurian evaporites while the basin was restricted would have created a steep 
salinity gradient across the Upper Silurian-Middle Silurian boundary. This condition would have 
resulted in the downward diffusion of solutes from the Upper Silurian. Over millions of years, 
downward diffusive transport of solutes from the Silurian, could explain the present-day 
occurrence of high salinity porewater in the Upper Ordovician. 
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a thin aquifer at 325.5-328.5 m depth in the Silurian Salina A1 carbonate unit (Figure 6) is 

indicative of the presence of glacial melt water and represents the maximum depth of glacial 

melt water infiltration observed at the Bruce nuclear site.  These results are consistent with those 

for the northern margins of the Michigan Basin [26].  The cyclic nature of glacial-interglacial 

periods in the past 1 to 2 Ma [27] could have resulted in repeated infiltration events in the 

Devonian (and possibly Silurian) stratigraphy of southern Ontario.  Subsequent diffusive 

equilibration between saline formation waters in the low-permeability sediments and relatively 

fresh glacial and meteoric water in the more permeable units would have occurred during 

interglacial periods. 

Lower Silurian and Upper Ordovician: The tracer values in this interval (4880 to 7868 mmol 

Cl/kgw; 27 to 49 mmol Br/kgw; 
18

O from -3.9 to -1.9‰ and 
2
H from -55.9 to -40.9‰) are 

consistent with the initial condition inferred above for the Silurian and Devonian – evaporated 

seawater with very high salinity, and 
18

O and 
2
H values that plot to the right of the global 

meteoric water line.  Porewater that originated as evaporated seawater is expected in the Silurian 

and Devonian rocks because of the restricted marine conditions that existed in the basin at that 

time.  The present-day salinity in the Upper Ordovician shales (average Cl concentration of 5800 

mmol/kgw) is much higher than the initial normal marine conditions of deposition.  The 

deposition of Upper Silurian evaporites while the basin was restricted would have created a steep 

salinity gradient across the Upper Silurian-Middle Silurian boundary.  This condition would have 

resulted in the downward diffusion of solutes from the Upper Silurian.  Over millions of years, 

downward diffusive transport of solutes from the Silurian, could explain the present-day 

occurrence of high salinity porewater in the Upper Ordovician.   
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Figure 6. Vertical depth profiles for natural tracers. 

Middle Ordovician: Similar to the data from the Upper Ordovician, present day tracer values in 
the Middle Ordovician are significantly evolved from that of the normal marine conditions 
present during deposition. The porewater Cl and Br concentrations, ranging respectively from 
3100 to 7536 mmol Cl/kgw, and from 11.1 to 32.5 mmol Br/kgw, exceed normal marine 
concentrations (approximately 600 mmol Cl/kgw and 0.84 mmol Br/kgw), and the 43180 values, 
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ranging from -8.78 to -2.4%0, are depleted with respect to sedimentary basin brines. With 
increasing depth, the trend in the Middle Ordovician is toward a gradual decrease in Cl, Br and 

, 618U— but there is a slight increase in .32H observed within the Black River Group carbonates 
(Figure 6). The smooth nature of the trends suggests that diffusion is the dominant transport 
mechanism. 

Consistent with the model for the Upper Ordovician, the high Cl and Br concentrations and the 
trend with depth toward lower concentrations could be explained by diffusion downward from 
the Upper Silurian. Similarly, the trends in the .3180 and .32H tracer profiles could result from 
diffusive mixing with water at depth that is relatively depleted in 180 and enriched in 211. This 
end member could not be the brine that is currently contained in the Cambrian sandstone because 
it has a higher salinity and more enriched isotopic composition than the porewater in the Middle 
Ordovician carbonates (Figure 6). However, as discussed below, the high permeability of the 
Cambrian sandstone could have allowed for exchange of groundwater in the aquifer in the 
geologic past. The question then arises as to when the high salinity groundwater moved into the 
aquifer, and if the precursor groundwater in the aquifer and the underlying shield could have 
provided a suitable end member to generate the observed trends. 

The composition of brine in the Precambrian below the Michigan Basin is not known, but there 
has been considerable effort extended to develop an understanding of Precambrian shield 
groundwater elsewhere in Canada and around the world, which may be relevant ([28],[29],[30], 
[31],[32],[33],[34],[35] and [36]). It should be expected that the water present in the Michigan 
Basin during the Cambrian and Ordovician (normal marine seawater) would have invaded the 
underlying shield to some extent, so it is likely that the shield groundwater composition has been 
influenced by fluids in the basin. 

Reasonable inferences can be made to constrain the isotopic composition of Precambrian 
groundwater or porewater below the Michigan Basin. Previous research on present-day shield 
brines provides knowledge of geochemical modifications to the stable isotope composition of 
groundwater that result from diagenetic reactions in shield settings ([28],[29],[30],[31],[32], 
[37],[33],[35] and [36]). Over very long periods of time, under conditions of low water to rock 
ratios, mineral hydration reactions in shield settings cause the isotopic composition of 
groundwater to evolve toward .3180 depletion and .32H enrichment, leading to characteristic 
signatures that plot to the left of the GMWL (Figure 7). On this basis, various researchers ([28], 
[29],[31] and [32]) have proposed 6180 values ranging from -13 to -7/00 for a hypothetical shield 
groundwater end member. The stable isotopic data from the Ordovician porewater display a 
trend toward 6180 depletion and 6211 enrichment along a trajectory toward the hypothetical 
shield brine end member (Figure 7), suggesting that diffusion between Middle Ordovician 
porewater and shield groundwater could explain the observed trends in the Middle Ordovician. 

Cambrian: The tracer profiles in the Cambrian sandstone depart from the trends observed in the 
Middle Ordovician and display an abrupt shift back toward high salinity and more enriched .3180 
values (Figure 6). The similarity between the present-day brine in the Cambrian below the Bruce 
nuclear site and the Cambrian and deep Ordovician brines elsewhere in the Appalachian and 
Michigan basins ([38],[17],[24],[25]), respectively, suggests that the Cambrian fluid underlying 
the Bruce nuclear site originated at depth within the Michigan Basin. 

Based on the conceptual model proposed above for the evolution of the Upper and Middle 
Ordovician porewaters, this feature in the Cambrian profiles is presumed to represent a recent 
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Cambrian sandstone could have allowed for exchange of groundwater in the aquifer in the 

geologic past.  The question then arises as to when the high salinity groundwater moved into the 

aquifer, and if the precursor groundwater in the aquifer and the underlying shield could have 

provided a suitable end member to generate the observed trends. 

The composition of brine in the Precambrian below the Michigan Basin is not known, but there 

has been considerable effort extended to develop an understanding of Precambrian shield 

groundwater elsewhere in Canada and around the world, which may be relevant ([28],[29],[30], 

[31],[32],[33],[34],[35] and [36]).  It should be expected that the water present in the Michigan 

Basin during the Cambrian and Ordovician (normal marine seawater) would have invaded the 

underlying shield to some extent, so it is likely that the shield groundwater composition has been 

influenced by fluids in the basin.   

Reasonable inferences can be made to constrain the isotopic composition of Precambrian 

groundwater or porewater below the Michigan Basin.  Previous research on present-day shield 
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groundwater that result from diagenetic reactions in shield settings ([28],[29],[30],[31],[32], 

[37],[33],[35] and [36]).  Over very long periods of time, under conditions of low water to rock 

ratios, mineral hydration reactions in shield settings cause the isotopic composition of 

groundwater to evolve toward 
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H enrichment, leading to characteristic 

signatures that plot to the left of the GMWL (Figure 7).  On this basis, various researchers ([28], 

[29],[31] and [32]) have proposed 
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O values ranging from -13 to -7‰ for a hypothetical shield 

groundwater end member.  The stable isotopic data from the Ordovician porewater display a 

trend toward 
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O depletion and 
2
H enrichment along a trajectory toward the hypothetical 

shield brine end member (Figure 7), suggesting that diffusion between Middle Ordovician 

porewater and shield groundwater could explain the observed trends in the Middle Ordovician. 

Cambrian: The tracer profiles in the Cambrian sandstone depart from the trends observed in the 

Middle Ordovician and display an abrupt shift back toward high salinity and more enriched 
18
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values (Figure 6).  The similarity between the present-day brine in the Cambrian below the Bruce 

nuclear site and the Cambrian and deep Ordovician brines elsewhere in the Appalachian and 

Michigan basins ([38],[17],[24],[25]), respectively, suggests that the Cambrian fluid underlying 

the Bruce nuclear site originated at depth within the Michigan Basin. 

Based on the conceptual model proposed above for the evolution of the Upper and Middle 

Ordovician porewaters, this feature in the Cambrian profiles is presumed to represent a recent 
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exchange of groundwater in the permeable Cambrian formation, which disrupted the diffusion-
controlled mixing relationship that had developed between basin and shield end members. Based 
on the evolutionary history of the Michigan Basin, the possible drivers for long-distance fluid 
migration in the recent geologic past are limited and the conceptual model asserts that fluid 
migration occurred in response to differential uplift of the basin due to repeated isostatic 
adjustments associated with glaciation and deglaciation. 
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Figure 7. Plot of 8180 versus 82H for Ordovician and Cambrian porewater from DGR-2, 
DGR-3 and DGR-4. 

5. NUMERICAL MODELLING 

Numerical simulations of diffusive transport were conducted in 1-D, using MIN3P, with the 
intention of assessing the feasibility of the interpretation, or conceptual model, presented above, 
and if possible, to place time constraints on the development of the observed features in the 
natural tracer profiles in a diffusion-dominated system. MIN3P is a general purpose flow and 
reactive transport code for variably saturated media [39]. In the simulations discussed, reaction 
processes were not included and the model was used to simulate conservative solute transport by 
diffusion only. Justification of the modelling parameters used is provided in subsections 5.1 and 
5.2, followed by a presentation of the modelling results. 

5.1. Diffusion Coefficients 

Effective diffusion coefficients (De) were measured at the University of New Brunswick using 
steady-state through-diffusion and X-ray radiography testing techniques. Testing was completed 
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on preserved cores collected from Silurian and Ordovician formations in boreholes DGR-2, 
DGR-3 and DGR-4. Measurements were conducted in both normal and parallel to bedding 
orientations. The detailed methods are described in [40]. 

With the exception of just a few samples from the Upper Silurian, the De values measured from 
DGR drill cores are all less than 10-11 M2/S (Figure 8). The majority of the data are in the range 
10-13 < De < 10-11 M21S, with Lower Silurian and Upper Ordovician shale samples representing 
the higher end of this range because of their relatively high porosity (7 to 9%). The low porosity 
of the Middle Ordovician limestone (< 2%) results in low De values, which cluster in the range 
10-13 < De < 10-12 M21S, with only a few samples displaying values slightly greater than 10-12
M21S. 

There are systematic differences in De values as a function of the orientation of the 
measurements with respect to bedding direction. With only two exceptions in the Upper 
Silurian, the De values from paired samples are greatest for diffusion in the orientation parallel to 
bedding. The anisotropy ratio (De parallel/De normal) ranges from 1 to 4 for measurements 
made with the iodide tracer, and from 1 to 7 for measurements made with tritiated water, HTO 
[41]. 
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Figure 8. Plots of effective diffusion coefficients (De) versus depth. 

The distribution of De values is shown in Figure 8. In Table 1, De is presented as a function of 
the free-water diffusion coefficient (Do), the porosity (co) and the tortuosity factor (rf): 

(1) 

Based on the isotopic evidence indicating limited diffusion of CH4 and He across the Cobourg 
and Blue Mountain formations, simulations were conducted using diffusion coefficients for this 
interval that were reduced by an order of magnitude to simulate the presence of an in situ barrier 
(e.g., occlusion of porosity due to partial saturation and/or secondary mineral infilling) (see 
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The distribution of De values is shown in Figure 8.  In Table 1, De is presented as a function of 

the free-water diffusion coefficient (D0), the porosity ( ) and the tortuosity factor ( f):  

                                                                                                                         (1) 

Based on the isotopic evidence indicating limited diffusion of CH4 and He across the Cobourg 

and Blue Mountain formations, simulations were conducted using diffusion coefficients for this 

interval that were reduced by an order of magnitude to simulate the presence of an in situ barrier 

(e.g., occlusion of porosity due to partial saturation and/or secondary mineral infilling) (see 
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Table 1). The diffusion parameters for the Precambrian listed in Table 1 are not constrained by 
site-specific measurements but are considered to be reasonable estimates [42]. 

5.2. Modelling Parameters and Boundary Conditions 

Simulations of diffusive transport for the natural tracers in the Ordovician sediments were 
conducted in a single stage lasting 300 million years (Ma). Transport in all stratigraphic units 
was by diffusion only. Chloride diffusion was simulated to represent the evolution of salinity 
between the normal marine condition in the Cambrian and Ordovician, and the evaporated 
seawater brine in the Silurian and Devonian. Diffusion of 180 was simulated to represent the 
evolution of the isotope profile in response to mineral hydration reactions occurring in the 
underlying shield. 

The simulations are supported by stratigraphic and hydrostratigraphic information from DGR 
drilling (Figure 1), measured data for porewater 6180 and Cl concentrations (Figure 6), an 
estimate of the Precambrian groundwater 6180 composition (-10 ± 3%o based on Precambrian 
shield literature; Figure 7), and the initial 6180 composition of the Michigan Basin brines (-2%0) 
estimated from available data sources ([24],[25],[13],[14]). The laboratory-determined diffusion 
coefficients (Figure 8; Table 1) were used to assign the diffusion properties throughout the 
domain. 

Table 1. Distribution of Diffusion Parameters Used in Diffusion Simulations 

Depth (m) Stratigraphy Porosity Tortuosity' De (m2/s) 

0 to 120 Devonian 0.1 0.188 5.0 x 10-11

120 to 180 Silurian: Bass Islands 0.017 0.023 1.0 x 10-12

180 to 220 Silurian: Salina Units F and G 0.11 0.038 1.1 x 10-11

220 to 300 Silurian: Salina Units B to E 0.18 0.038 1.8 x 10-11

300 to 450 Silurian: Manitoulin to Salina Unit A 0.059 0.0038 6.0 x 10-13

450 to 610 Upper Ordovician Shale — Saturated 0.084 0.016 3.6 x 10-12

610 to 660 Upper Ordovician Shale 
0. 

084 
2 .01) 

0.016 4.3 x 10-13

660 to 700 Middle Ordovician Limestone 
0.013 
(0.002)2 0.02 1.1 x 10-13

700 to 840 Middle Ordovician Limestone 0.013 0.02 6.9 x 10-13

840 to 860 Cambrian Sandstone 0.14 0.2 7.4 x 10-11

860 to 1160 Shallow Precambrian 0.0053 0.23 2.7 x 10-12

1160 to 1610 Deep Precambrian 0.00253 0.23 1.3 x 10-12

Notes: Calculated from Do and laboratory measurements of De and porosity. Reduction of porosity by a factor of 
approximately 10 to simulate the natural barrier to solute transport near the base of the Cobourg. 3 Assumed values. 

An initial concentration of 7000 mmol Cl/kgw (evaporated seawater brine) was assigned 
throughout the Silurian and Devonian, and an initial concentration of 600 mmol/kgw for Cl was 
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Table 1).  The diffusion parameters for the Precambrian listed in Table 1 are not constrained by 

site-specific measurements but are considered to be reasonable estimates [42]. 

5.2. Modelling Parameters and Boundary Conditions    

Simulations of diffusive transport for the natural tracers in the Ordovician sediments were 

conducted in a single stage lasting 300 million years (Ma).  Transport in all stratigraphic units 
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estimated from available data sources ([24],[25],[13],[14]).  The laboratory-determined diffusion 

coefficients (Figure 8; Table 1) were used to assign the diffusion properties throughout the 

domain.   

Table 1.  Distribution of Diffusion Parameters Used in Diffusion Simulations 

Depth (m) Stratigraphy Porosity Tortuosity
1
 De (m

2
/s) 

0 to 120 Devonian 0.1 0.188 5.0 x 10
-11

 

120 to 180 Silurian: Bass Islands 0.017 0.023 1.0 x 10
-12

 

180 to 220 Silurian: Salina Units F and G 0.11 0.038 1.1 x 10
-11

 

220 to 300 Silurian: Salina Units B to E 0.18 0.038 1.8 x 10
-11

 

300 to 450 Silurian: Manitoulin to Salina Unit A 0.059 0.0038 6.0 x 10
-13

 

450 to 610 Upper Ordovician Shale – Saturated 0.084 0.016 3.6 x 10
-12

 

610 to 660 Upper Ordovician Shale 
0.084 

(0.01)
2
 

0.016 4.3 x 10
-13

 

660 to 700 Middle Ordovician Limestone 
0.013 

(0.002)
2
 

0.02 1.1 x 10
-13

 

700 to 840 Middle Ordovician Limestone 0.013 0.02 6.9 x 10
-13

 

840 to 860 Cambrian Sandstone 0.14 0.2 7.4 x 10
-11

 

860 to 1160 Shallow Precambrian 0.005
3
 0.2

3
 2.7 x 10

-12
 

1160 to 1610 Deep Precambrian 0.0025
3
 0.2

3
 1.3 x 10

-12
 

Notes: 1 Calculated from D0 and laboratory measurements of De and porosity.  2 Reduction of porosity by a factor of 

approximately 10 to simulate the natural barrier to solute transport near the base of the Cobourg.  3 Assumed values. 

An initial concentration of 7000 mmol Cl/kgw (evaporated seawater brine) was assigned 

throughout the Silurian and Devonian, and an initial concentration of 600 mmol/kgw for Cl was 
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assigned in the Ordovician and below to represent normal marine seawater. For Cl simulations, 
free exit boundary conditions were applied at the top and bottom of the domain. A free exit 
boundary condition was applied at the top of the domain, and a constant concentration (b180 = 
-12%o) boundary condition was assigned at the bottom of the domain to represent mineral 
hydration reactions operating in the crystalline bedrock [31]. The bottom of the domain was 
established 750 m below the Precambrian-Paleozoic unconformity (1610 mBGS). 

5.3. Modelling Results 

The dashed yellow lines in Figures 9a and 9b represent results of the simulation conducted with 
De values as measured. The dashed blue lines represent results of simulations in which De has 
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The results for salinity and 6180 diffusion simulations over a period of 300 Ma do not match well 
with the measured tracer profiles (Figure 9a,b) when De values are not adjusted (yellow lines) to 
represent a transport barrier near the Blue Mountain and Cobourg formations. 

In the case where a transport barrier is included in the form of reduced De values (blue lines) in 
the Blue Mountain and Cobourg formations, the simulations provide a good fit to the measured 
porewater data (Figure 9a,b). The salinity (Cl) tracer profile develops as a result of salt diffusion 
downward from the Silurian and the 6180 profile results from diffusive mixing with a shield 
brine at the base of the profile, suggesting that the conceptual model may be a reasonable 
explanation for the trends observed in the tracer profiles and supports the hypothesis that solute 
transport in the Ordovician sediments is diffusion-dominated. 

The principal controls on the shape of the simulated profiles are the boundary conditions, the 
contrast in De between the Upper and Middle Ordovician, and the inclusion or exclusion of a 
transport barrier (lowering of the De values) near the base of the Cobourg Formation. 

6. CONCLUSIONS 

The data from the Bruce nuclear site indicate that the deep sedimentary brines underlying the 
Bruce nuclear site are of similar composition to those described more broadly from the Michigan 
Basin, suggesting that the brines are of seawater, or evaporated seawater, origin and have been 
modified over many millions of years by various mixing and water-rock interaction processes. 

Concentrations of Cl and Br increase with depth from the surface toward the top of the Guelph 
Formation, and 6180 and 62H range from relatively depleted values near surface to more 
enriched values toward the top of the Guelph Formation. Below the Guelph Formation, 
concentrated brines occur at all depths down to the top of the Precambrian and there is no 
evidence for glacial or meteoric water infiltration. 

Radiogenic 87Sr/86Sr ratios in the Middle and Upper Ordovician porewater are interpreted to 
result from a combination of 87Sr leaching from shield-derived detrital minerals, in situ 87Rb 
decay, and diffusion of 87Sr upward from an enriched end member in the shield. All of these 
mechanisms indicate long porewater residence time. 

Separation between biogenic CH4 in the Upper Ordovician shales and thermogenic CH4 in the 
Middle Ordovician carbonates indicates that advective mixing has not occurred since the gases 
have been resident in the system and that diffusive transport is extremely slow. Similarly, 
separation between He with different 3He/4He ratios in the same interval suggests that diffusion 
is extremely slow and that there is a barrier to vertical solute migration near the base of the 
Cobourg Formation. 

A conceptual model has been developed to explain the evolution of the natural tracer profiles and 
has been tested using 1-D numerical simulations. The simulation results provide a reasonable fit 
to the measured tracer data and suggest that the time frame required for the development of the 
natural tracer profiles within the Ordovician sediments is on the order of hundreds of millions of 
years. The simulation results, in addition to hydrogeochemical data presented in the paper 
(87Sr/86Sr; the isotopes of CH4, CO2 and helium; chloride, bromide, 6180 and 62H; De), provide 
multiple lines of evidence in support of the hypothesis that solute transport in the Ordovician 
sediments is dominated by diffusion. 
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