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ABSTRACT 

As part of the postclosure safety assessment undertaken for the proposed Deep Geologic 
Repository (DGR) for Low and Intermediate Level Waste (L&ILW) at the Bruce nuclear site, 
calculations were undertaken to evaluate the repository's potential postclosure impacts. Impacts 
were evaluated for a Normal Evolution Scenario, describing the expected long term evolution of 
the repository and site following closure, and for several Disruptive Scenarios, which consider 
events that could lead to possible penetration of barriers, abnormal degradation, and/or loss of 
containment. 

The postclosure modelling was conducted using both detailed models with three-dimensional 
representation of the repository geometry, and with an overall (system) assessment-level model. 
The purpose of the detailed modelling described in this paper was to evaluate postclosure 
performance in terms of repository pressures, repository resaturation levels, mass flow rates of 
gas at various levels in the shaft, groundwater flow and radionuclide transport through the 
saturated geosphere and shaft seals, and capture rates of radionuclides by a hypothetical water 
supply well. The results of the detailed modelling were used to inform overall assessment-level 
(system) modelling that was performed using the compartmental modelling code AMBER and 
which is described in a companion paper. 

Two separate detailed modelling studies were undertaken: 1) generation of gas in the repository, 
repository resaturation, and transport of gas through the geosphere and shaft sealing system was 
simulated using T2GGM, a modified version of the TOUGH2 gas transport code with coupled 
gas generation, and 2) transport of groundwater and radionuclides through the saturated 
geosphere and shaft seals was simulated with FRAC3DVS-OPG. 

The gas generation model (GGM) incorporated within T2GGM was developed expressly for the 
L&ILW waste that will be present at the DGR. GGM calculates generation and consumption of 
oxygen, hydrogen, carbon dioxide, methane, hydrogen sulphide and nitrogen from degradation 
of the various organic and metallic waste streams. 
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Results from the Normal Evolution Scenario groundwater model show that radionuclide 
transport is diffusion dominated and very slow, with virtually no transport beyond the immediate 
vicinity of the repository. Results from gas modelling indicate that the repository will take 
hundreds of thousands of years to resaturate, and that there will be no gas flow within the shaft 
for the Reference Case and most Normal Evolution sensitivity cases. In the few cases where gas 
flow in the shaft does occur, it is restricted to lower portions of the shaft. No gas enters the 
shallow groundwater system. The gas modelling also indicates that in most cases, repository 
pressures will equilibrate near the expected steady-state in-situ pressure. In no cases do the gas 
pressures exceed the lithostatic pressure. 

1. INTRODUCTION 

Ontario Power Generation (OPG) is proposing to build a Deep Geologic Repository (DGR) for 
Low and Intermediate Level Waste (L&ILW) near the existing Western Waste Management 
Facility at the Bruce nuclear site in the Municipality of Kincardine, Ontario. An Environmental 
Impact Statement (EIS) [1] and a Preliminary Safety Report (PSR) [2] for the proposed 
repository were submitted to the Canadian Nuclear Safety Commission for the Joint Review 
Panel in April 2011. 

Two of the supporting documents for the EIS and PSR are the detailed gas [3] and groundwater 
[4] modelling reports. These reports describe numeric modelling that was used to inform the 
assessment scale modelling described in the postclosure safety assessment reports [5,6]. The 
assessment modelling approach and results are further described in a companion paper [7] and 
will not be described further here. 

This paper provides an overview of data sources (Section 2), the gas and groundwater modelling 
codes (Section 3), calculation cases (Section 4), discretization and property assignment (Section 
5), the gas (Section 6) and groundwater (Section 7) modelling results, and the overall 
conclusions arising from the detailed modelling (Section 8). 

2. DATA SOURCES AND REFERENCE CASE 

Most of the data used in the modelling are specific to the DGR system and have been taken from 
the waste characterization, site characterization, and repository engineering programs. The 
overall DGR program has been structured such that the safety assessment has been produced in 
multiple iterations, with data freezes in synchronization with the inventory, design and 
geosciences programs. 

Data was either obtained from published literature or referenceable documents, or was released 
for use within the DGR project using a data clearance process. In the latter case, approved data 
have been documented using a data clearance form that records the persons providing and 
approving the dataset, together with the purpose and nature of the dataset, its status/history, and 
any limitations/restrictions on its use/application. 

Table 1 summarizes the reference values used for the key parameters. Further details on model 
parameters used in gas and groundwater modelling are provided in a Data report [8] or the 
associated modelling reports. 

Site stratigraphy, environmental head and geosphere hydraulic conductivity profiles are 
presented in Figure 1. The figure also defines the bedrock groundwater zones that encompass 
the modelling domain. 
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Table 1. Reference values for key parameters 

Parameter Value(s) 
Repository 

Repository depth 680 m 
Average repository initial height 7 m 
Panel footprint 2.4 x 105 m2
Excavated volume Excavated: 5.3 x 105 m3; Void: 4.2 x 105 m3. 
Waste volume (as disposed) Panel 1: 6.8 x 104 e; Panel 2, 1.3 x 105 m3
Mass of organics 2.2 x 101 kg (waste, packages & engineering) 
Mass of metals 6.6 x 10' kg (waste, packages & engineering) 
Backfilling of rooms and tunnels None except monolith in immediate vicinity of shafts 
Monolith properties Kh and K 1 x 10-15 m/s; porosity 0.1; effective diffusion coefficient 1.25 x 10-10 m2/s 

(degraded from closure) 
Repository HDZ Kh 1 x 10-6 m/s, K = Kh; porosity 4 x rock mass 
Repository EDZ Kh 103 x rock mass, K = Kh; porosity 2 x rock mass 
Rockfall Rockfall affects all rooms and tunnels,10 m into ceiling immediately after closure 
Anaerobic Corrosion rates Carbon steel and galvanized steel: 1 pm/a (unsaturated), 2 pm/a (saturated), 

Passivated carbon steel, stainless steel and Ni-alloys: 0.1 pm/a 
Zr-alloys: 0.01 pm/a 

Anaerobic Degradation rates Cellulose: 5 x10-4 /a, Ion exchange resins, plastics and rubber: 5 x 10-5 /a 
Shaft 

Internal diameter (lower section) Main: 9.15 m; Ventilation: 7.45 m; 
Combined: 11.8 m (concrete lining and HDZ removed) 

Length (lower section) 483.5 m (top of monolith to top of bulkhead at top of intermediate groundwater zone) 
Backfill and seals Sequence of bentonite-sand, asphalt, LHHPC and engineered fill. LHHPC bulkheads 

(degraded from closure) keyed across the inner EDZ 
Vertical and horizontal hydraulic 
conductivity 

Bentonite-sand: 1 x 10- 1m/s; Asphalt: 1 x 10-12 m/s; 
LHHPC: 1 x 10-19 m/s; Engineered fill: 1 x 104 m/s 

Diffusion and transport porosity Bentonite-sand: 0.3; Asphalt: 0.02; LHHPC: 0.1; Engineered fill: 0.3 
Effective diffusion coefficient Bentonite-sand: 3 x 10-19 m2/s; Asphalt: 1 x 10-13 m2/s; 

LHHPC: 1.25 x 10-19 m2/s; Engineered fill: 2.5 x 10-19 m2/s 
EDZ Inner EDZ, 0.5 x shaft radius thick, Kv x 100 rock mass, Kh = Kv; porosity 2 x rock mass 

Outer EDZ, 0.5 x shaft radius thick, K x 10 rock mass, Kh = Kv; porosity = rock mass 
Geosphere 

Host rock type Low permeability argillaceous limestone (Cobourg Formation) 
Temperature at repository depth 22 °C 
Hydraulic heads +165 m at top of the Cambrian sandstone 

Observed variable head profile with underpressures in the Ordovician (up to -290 m) 
0 m at the top of the Lucas Formation (top of the shallow groundwater zone) 

Deep groundwater zone: 
horizontal hydraulic conductivity 8 x 10-15 to 4 x 10-12 m/s for most formations; 

1 x 10-9 in the Shadow Lake Formation and 3.0 x 10-6 in the Cambrian sandstone 
vertical hydraulic conductivity 10% of horizontal hydraulic conductivity for most formations 

0.1% in Coboconk and Gull River formations, isotropic in Cambrian 
transport porosity 0.009 to 0.097 
effective diffusion coefficient 2.2 x 10-13 to 2.4 x 10-11 m2/s (some anisotropy) 
horizontal hydraulic gradient 0 

Intermediate groundwater zone: 
horizontal hydraulic conductivity 5 x 10-14 to 2 x 10-7 m/s 
vertical hydraulic conductivity 10% of horizontal hydraulic conductivity for most formations; 

isotropic in Guelph Formation and Salina Al Unit upper carbonate 
transport porosity 0.007 to 0.2 
effective diffusion coefficient 3 x 10-14 to 6.4 x 10-11 m2/s (some anisotropy) 
horizontal hydraulic gradient 0 

Shallow groundwater zone: 
horizontal hydraulic conductivity 1 x 10-7 to 1 x 104 m/s 
vertical hydraulic conductivity 10% of horizontal hydraulic conductivity for all formations 
transport porosity 0.057 to 0.077 
effective diffusion coefficient 6 x 10-12 to 2.6 x 10-11 m2/s 
horizontal hydraulic gradient 0.003 

Abbreviations used in the table: Kv: vertical hydraulic conductivity 
Kh: horizontal hydraulic conductivity 
LHHPC: Low Heat High Performance Cement 
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Figure 1. Site reference stratigraphy and geosphere hydraulic properties 

Capillary pressure and relative permeability data are important parameters for gas modelling as 
they control the transport of gas within the geosphere and seal system. Within the T2GGM code, 
the parameters are represented as functions of liquid saturation using the modified van 
Genuchten equations [9] as presented in the iTOUGH2 reference manual [10]. The equations, 
referred to in this paper as the "van Genuchten curves" are characterized by three parameters: 
m, and n. is analogous to air-entry pressure, while m and n control the shape of the curves. 
Van Genuchten parameters for the seal system were derived from external sources and are 
described in [8]. For the geosphere, van Genuchten parameters were fitted to petrophysical 
analyses of DGR rock core samples as part of the site characterization program [11, 12]. For 
most of the calculation cases, a single set of parameters was used for the lower-permeability 
Silurian and Ordovician rocks (Figures 2 and 3). Sensitivity cases evaluated the impact of 
changes to the parameters. Within the excavation damaged zones (EDZ), the magnitude of the 
air entry pressure ( X, ') was reduced to reflect increased permeability in these zones. 
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3. DETAILED MODELLING CODES 

10 

3.1 Gas Generation & Transport Model — T2GGM 

Gas generation within the repository is one of the key factors in the postclosure safety of the 
proposed facility. Gas is generated and consumed within the repository by various microbial and 
corrosion processes. The repository interacts with the geosphere through the flow of gas and 
water into and out of the repository. Following closure, the build-up of gas within the sealed 
repository affects the water resaturation time and could lead to the release of gaseous 
radionuclides through either the sealing system or the geosphere. 

Since gas generation requires water under anaerobic conditions, a coupled model of gas 
generation and transport was developed and implemented in a code designated T2GGM [13]. 
The code comprises a component which models gas generation within the DGR due to corrosion 
and microbial degradation of the waste packages, and a component which models the two-phase 
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transport of the gas through the repository and into the DGR shafts and geosphere (Figure 4) as 
well as water from the shafts and geosphere into the repository. 

T2GGM 

Geosphere 

TOUGH 2 Transport Model/ 

- Gas Transport 
- Water Transport 

Repository 

- Gas Transport _ 
- Water Transport 

Source/Sink for gas & water.. d 

- Repository Void Volume 
- Average Gas Pressure 
- Total Water Saturation 
- Average Relative Humidity 

- Gas Generation Rate 
- Water Generation Rate 

Repository 

Gas Generation Model 
- Corrosion 
- Microbial degradation 
- Gas generation/ 

consumption 
- Water generation/ 

consumption 

Figure 4. Coupling gas generation and transport in T2GGM 

The Gas Generation Model (GGM) calculates the rates of generation/consumption of gas and 
water due to the various corrosion, degradation and microbial processes acting on the waste, and 
the composition of the gas within the repository. It ensures mass balance of water, carbon (C) 
and iron (Fe). Other elements are conservatively assumed not to be limiting and are not tracked 
for mass balance (e.g., N needed to support microbial reactions). GGM is integrated with the 
widely used two-phase flow code TOUGH2 [14]. TOUGH2 is used with the E0S3 equations of 
state (water and air) and has been modified to use gases other than air (CH4, CO2, 112, air). 
Methane was used for most calculation cases presented in this paper. 

3.2 Groundwater Flow and Transport Code — FRAC3DVS_OPG 

The groundwater flow and transport modelling is used to provide estimates of groundwater flow 
rates in the shaft and geosphere, to estimate concentration and mass flow rates of radionuclides at 
various points in the intermediate and deep bedrock systems, and to estimate capture of 
radionuclides by a water supply well located in the shallow groundwater system. 

All detailed groundwater modelling was performed using FRAC3DVS OPG (Version 1.3.0) 
[15]. FRAC3DVS-OPG is a successor code to FRAC3DVS [16], a three-dimensional numeric 
model describing subsurface flow and solute transport. It has been used extensively by NIATMO 
for previous flow and transport simulations relating to deep geologic repositories. 

4. CALCULATION CASES 

Detailed modelling was performed for a number of parameter and conceptual model sensitivity 
cases, over a 1 Ma time frame starting at repository closure. All cases were derived from a 
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Reference Case characterization of the system that assumes a constant present day climate, with 
no change in boundary conditions during the 1 Ma assessment period. Cases encompassed both 
variations on the Normal Evolution (NE) scenario and several Disruptive Scenarios (DS). 
Figures 5 and 6 illustrate the naming, derivation, and purpose of each case for gas and 
groundwater modelling respectively. 
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Figure 5. Calculation cases for detailed gas modelling 
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Figure 6. Calculation cases for detailed groundwater modelling 

5. DISCRETIZATION AND PROPERTY ASSIGNMENT 

5.1 Gas Modelling 

In general, two-phase flow modelling is computationally demanding. Detailed modelling was 
performed using a number of model domains, with model scale and dimensionality optimized to 
reflect the performance requirements and numeric constraints associated with individual 
calculation cases. 

The primary model was designated the three Dimensional Detailed (3DD) model. It included a 
representation of the repository panels, access tunnels and shaft system. The planned repository 
will have two shafts (main and ventilation) that are located in close proximity. For modelling 
purposes, these were combined to form a single shaft with the effective cross-sectional area 
equivalent to that of the two designed shafts. Access tunnel layout was also simplified and 
individual emplacement rooms in each panel combined. The resulting model grid consisted of 
126,000 nodes and 390,000 connections. Figure 7 is an illustration of the 3DD model 
discretization. 
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Figure 7. 3DD Gas Model Diseretication 

A simplified 3D model, called the Three-Dimensional Simplified Repository and Shaft (3DSRS) 
model was used for a number of cases. Consisting of 10,000 nodes and 29,000 connections, it 
represented a quarter-section model of the shaft and combined repository panels. The vertical 
domain of the 3D model was restricted to the formations from the Shadow Lake to the Guelph, 
inclusive. For those few calculation cases that indicated gas flow up the shaft, a two-
dimensional model (2 Dimensional Radial Simplified, or 2DRS) was used to simulate shaft flows 
only. It extended from the Cobourg to the top of the Salina G formation and was used to 
calculate potential gas flow rates from the shaft into the Shallow Bedrock Groundwater Zone. 

5.2 Groundwater Modelling 

There are two groundwater models: 1) a three-dimensional model similar to the 3DD gas model; 
and, 2) a three-dimensional model of the shallow bedrock groundwater system. 

The primary 3DD groundwater model is discretized at a higher level of detail than the 3DD gas 
model, and has increased vertical extents, including the entire intermediate and deep 
groundwater system (Figure 8). 
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Figure 8. 3DD Groundwater Model Diseretization 

The shallow bedrock groundwater model (3 Dimensional Simple Upper or 3DSU) is limited to 
the Shallow Bedrock Groundwater Zone only and was used to calculate the capture fraction of a 
hypothetical water supply well. The water supply well was located down gradient of the shaft 
(the source location), and at a depth consistent with current regional well usage. Figure 9 is a 
schematic representation of the model. 
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6. GAS MODELLING RESULTS 

This section presents results for selected normal evolution cases and for a single shaft failure 
case. Results are described in terms of repository pressures and saturations and flow rates of gas 
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6. GAS MODELLING RESULTS 

This section presents results for selected normal evolution cases and for a single shaft failure 

case.  Results are described in terms of repository pressures and saturations and flow rates of gas 
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through the shaft seal systems in those cases where such flow occurs. Although both dissolved 
gas and free-phase gas flow rates are calculated by T2GGM, only the latter are presented in this 
paper. Concentrations of dissolved gas were extremely low in all cases. 

6.1 Reference Case (NE-RC) 

The NE-RC case assumes 10% gas saturations within an underpressured Ordovician geosphere, 
consistent with site characterization results. The initial head profile presented in Figure 1 was 
used to calculate the initial pressure distribution in the model. The operational phase of the 
facility was simulated as a 60 year period when shaft and repository pressures were set to 
atmospheric and gas saturations were set to 100%. At closure, the monolith (emplaced concrete 
seal within access tunnels and the bottom part of the shafts) and shaft seals are assumed to be 
placed instantaneously at specified gas saturations. 

From this point forward, gas forming from degradation and corrosion reactions starts to 
pressurize the repository. The first few years involve sustained gas and water consumption due 
to aerobic degradation. Them is a sharp peak in the rate of gas consumption (primarily 
hydrogen) and water production during the ferric iron and sulphate reduction stages due to 
hydrogen oxidation. 

The longest sustained period of gas generation occurs during the methanogenic stage up to 4000 
years. Gas generation here is primarily due to the production of hydrogen through the corrosion 
of the carbon and galvanized steels. Methane generation via the microbial metabolism of carbon 
dioxide and hydrogen and the exhaustion of the metallic wastes causes a decline in the amount of 
hydrogen present after this time. The NE-RC case parameters maximize microbial activity and 
gas generation by assuming that microbes are active if them are organics and water present, 
regardless of salinity or other factors, and that essentially complete degradation occurs. 

Gas generation and water consumption rates then both continue to decline as the waste packages 
become fully degraded. Figure 10 shows predicted gas and water generation rates, while Figure 
11 presents gas composition within the repository. 

1.0x10" 
I Iv 
is 
I 0,

c 61. 

O 

102 104
Time (3) 

figure 10. Reference case gas generation and water consumption rates in repository 
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Figure 11 Amounts of Gas in the Vapour Phase within the Repository (Reference Case) 

Pressures rise in the repository as gas is generated. The low permeability of the seal system 
prevents pressurized gas from traveling up the shaft. The reference case assumes that gas is 
present in the geosphere, albeit in small amounts due to the low gas saturations (10%) and low 
porosities of the rock mass. In addition to gas generated within the repository by 
degradation/corrosion, formation gas flows into the repository and contributes to the increase in 
pressure. Small amounts of formation liquid enter the repository during the period up to 
approximately 80 ka when pressure in the repository is lower than the liquid pressure in the 
surrounding geosphere. Subsequently, this water is expelled as pressures in the repository 
continue to increase. The evolution of repository pressure and saturation is shown in Figure 12. 
The repository saturation (the fraction of the repository volume that is filled with liquid) peaks at 
less than 0.01 or 1%. At the end of the 1 Ma simulation period, the repository is essentially dry. 
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Figure 12. Evolution of Reference Case (NE-RC) repository pressure and liquid saturation 
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Within the surrounding geosphere, the repository has a limited impact, as shown in Figure 13. 
The pressure profile within the geosphere changes slightly as the initial underpressure is 
dissipated; however, by 1 Ma a significant underpressure is still present. Gas saturations are 
slightly reduced above and below the repository due to gas flow from the formation into the 
repository. Figure 13 also shows the steady-state pressure distribution which would be obtained 
if the underpressures dissipated entirely. 
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Figure 13. Evolution of Reference Case (NE-RC) geosphere liquid pressure (expressed as 
hydraulic head) and gas saturation profile 

In summary, the NE-RC gas generation and transport model results show that: 

• The oxygen, nitrates and sulphates initially present have virtually no impact on the long-
term repository conditions. 

• Microbial activity is an important factor in causing gas generation. 
• Gas generation from the wastes is complete by 100 ka. 
• The peak gas pressure is 8.3 MPa at 1 Ma. The continued rise of the peak pressure after 

100 ka is due to the slow inflow of gas from the geosphere. 
• Liquid saturations in the repository never exceed 1%. At the end of the simulation the 

repository is dry. 

6.2 Simplified Base Case (NE-SBC) 

The NE-SBC case assumed a liquid saturated geosphere with an initial pressure profile 
representative of steady-state groundwater conditions. In this case, the underpressures indicated 
in Figure 1 (as measured at the site) are assumed to have dissipated entirely. There is a vertical 
upwards hydraulic head gradient (see "steady-state" line on Figure 13) driven by the 165 mAGS 
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head at the Cambrian formation. This is a conservative representation of the natural hydraulic 
pressures at the site that maximizes vertical transport. 

The detailed model results show that gas generation progressed similarly to NE-RC. 
Consequently, pressure results are similar to the NE-RC, except that there is no formation gas 
flowing into the repository and pressures do not continue to rise after gas generation reactions 
are complete. Repository liquid saturations reach approximately 4% by the end of the simulation 
(Figure 14). 
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Figure 14. Evolution of NE-SBC repository pressure and liquid saturation 
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6.3 Increased Gas Generation Rates (NE-GG1) 

In this case, the NE-SBC geosphere assumptions are used, while higher values are assumed for 
gas generation rates and initial waste package material amounts. The increased gas generation 
causes repository pressure to rise earlier, but it still equilibrates around the hydraulic pressure in 
the surrounding geosphere, as shown in Figure 15. 
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Figure 15. Evolution of NE-GG1 repository gas pressure 

Gas transport in this case is still limited in extent and magnitude. There is virtually no transport 
of gas into the host rock surrounding the repository due to the extremely low-permeability of the 
host rock. Figure 16 illustrates areas with gas saturations in excess of 10 (i.e. 0.01%) at 10,000 
a . 
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Figure 16. Evolution of NE-GG1 repository pressure and liquid saturation 

Figure 16 shows that gas has reached the top of the 3DD model domain in the shaft at 10,000 a. 
The 2DRS model was used to determine shaft transport above the 3DD model domain. As 
shown in Figure 17, gas leaves the shaft at the Guelph formation, and does not travel further 
vertically. This is due to the difference in capillary pressure between the concrete seal in the 
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shaft at that location and the relatively high-permeability Guelph formation. The gas pressure is 
higher in the concrete than in the Guelph and the gradient is thus outward into the formation. 
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Figure 17. NE-GG1: gas flow in shaft at 10,000 a 

This behavior is found in all Normal Evolution cases where pressures in the repository are 
sufficient to initiate gas flow up the shaft. Figure 18 presents the evolution of shaft gas flow at 
four different elevations. The effectiveness of the seal system is apparent in the reduction of gas 
flow rates at increasing elevations. As the gas rises in the shaft, a portion exits radially and 
dissolves in porewater in the EDZ and intact rock This is the cause of the reduction in gas flow 
rates between the Collingwood and Georgian Bay formations, and the smaller reduction between 
the Georgian Bay and Gasport. The zero total flow at the Salina A2 is further evidence of the 
effectiveness of the Guelph (just above the Goat Island formation) in diverting gas from the 
shaft. 
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C4 Shaft Failure — Base Case (SF-BC) 

The Shaft Failure cases are disruptive event cases where the shaft seal material is degraded and 
does not perform as designed. For the SF-BC case, the seal material is assumed to have a 
uniform hydraulic conductivity of 104 mts, which is a factor of 100-1000 higher than the 
reference value for the primary seals. The capillary pressure for the degraded material is set to 
zero at all liquid saturations. For all other parameters, the case uses NE-SBC assumptions. The 
higher permeability shaft leads to a relatively rapid ingress of water into the repository. As gas 
generation proceeds, the pressure in the repository exceeds that of the liquid saturated shaft, 
causing a rapid release of gas. Subsequent gas generation causes continual flow of gas up the 
shaft, which drops slowly as the gas generation rate within the repository decreases (Figure 19). 
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In this case, the Guelph formation does not act as a gas sink, as the capillary pressure in the 
degraded shaft material is below that of the formation. All gas traveling up the shaft exits into 
the shallow bedrock groundwater system. 

6.5 Case Comparison 

Figures 20 and 21 present the repository pressure and saturation evolution for all calculation 
cases. It can be seen that repository pressures never exceed 10 MPa and are thus well below the 
estimated lithostatic pressure at the repository horizon (17 MPa). Repository saturations do not 
exceed 15% except for cases with no gas generation (NE-NG1 and NE-NG2) and the disruptive 
event shaft failure cases (SF-BC and SF-ED). 
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Figure 20. All Cases: Evolution of repository pressure 
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Figure 21. All Cases: Evolution of repository saturation 
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There are five normal evolution cases where pressures in the repository are sufficient to initiate 
flow up the shaft. These are high gas generation rate cases (NE-GG1 case or variants NE-GT4, 
NE-GT5, NE-PD-GT5), or high gas pressure case (NE-NM). As described previously, all shaft 
gas flow for normal evolution cases exits the shaft at the Guelph formation, with no free gas 
reaching the Shallow Bedrock Groundwater Zone. However, some gas may subsequently diffuse 
into the shallow groundwater via groundwater pathway in these cases, and providing a pathway 
for some C14 to reach shallow groundwater. Only the shaft seal failure cases have the potential 
for free gas to directly reach the shallow groundwater. 

7. GROUNDWATER MODELLING RESULTS 

As shown in the previous detailed gas modelling results, the repository remains largely 
unsaturated, while the surrounding rock mass and shaft seal is largely saturated. However, the 
detailed groundwater flow modelling was performed assuming that the repository was instantly 
saturated on closure. 

Furthermore, it was assumed that all the radionuclides within the waste was instantly dissolved 
into the water saturated repository. For the detailed modelling of radionuclide transport, a single 
long-lived radionuclide (3 Chlorine) was used as a representative species. Inventory was 
allocated spatially into the two repository panels. This led to a slightly higher initial 
concentration in the North panel (Panel 1). Detailed results are presented for the normal 
evolution reference case (NE-RC) and for the human intrusion scenario case where an 
exploration borehole intersects the repository and the pressurized Cambrian formation below 
(HI-GR2). As can be seen in the case comparison presented subsequently, there is little variation 
among the NE calculation cases. 

7.1 Reference Case (NE-RC) 

The NE-RC case assumes a transient flow response starting with the hydraulic head profile 
described in Figure 1. The resulting head and advective velocity distribution at 100 ka is shown 
on a vertical slice through the repository and shaft in Figures 22 and 23. The velocity vectors in 
Figure 23 are shown only in those areas where the magnitude of the velocity is greater than 10-5
m/a, or expressed in other terms, greater than 10m of advective transport during the 1 Ma 
performance period. 
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Figure 22. NE-RC: Head distribution at 100 ka 
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Figure 23. NE-RC: Advective velocity distribution at 100 ka 
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By 1 Ma the under pressure has further dissipated (Figure 24). Velocities induced by the 
underpressure gradient have also &lined, as shown in Figure 25. 

Waste Management, Decommissioning and Environmental Restoration for Canada’s Nuclear Activities, September 11-14, 2011 

 

Figure 22. NE-RC: Head distribution at 100 ka 

Figure 23. NE-RC: Advective velocity distribution at 100 ka 

 

By 1 Ma the under pressure has further dissipated (Figure 24).  Velocities induced by the 

underpressure gradient have also declined, as shown in Figure 25. 

 



Waste Management, Decommissioning and Environmental Restoration for Canada's Nuclear Activities, September 11-14, 2011 

0 - 

-100 - 

-zr - 

Time1 .000 ,000 (a) 

— 

-1 

intervals Hydraulic head at 20 m 
Repository, shaft & seals 

— Permeable units 

165 

100 

E

(4 - 100 

-200 

-200 
ce) 

-300 - 
= 

= = -400
ul - 

-500  

-600 

-1500 -1000 -500 0 500 1000 
Vertical Exaggeration 2:1 Grid X (m) 

Figure 24. NE-RC: Head distrbution at 1 Ma 
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Figure 25. NE-RC: Advective velocity distribution at 1 Ma 

Vertical profiles of CI-36 concentralions are shown in Figure 26. 
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Figure 24. NE-RC: Head distribution at 1 Ma 

Figure 25. NE-RC: Advective velocity distribution at 1 Ma 

 

Vertical profiles of Cl-36 concentrations are shown in Figure 26. 
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Figure 26. NE-RC: CI-36 concentration at 50 ka, 100 ka, 500 ka, and 1 Ma 

The very limited extent of the plume development is an indication that transport is diffusion 
dominated with exceedingly low concentrations of radionuclides outside the immediate vicinity 
of the repository. A three-dimensional presentation of the transport results at 1 Ma is given in 
Figure 27. Again, the limited extent of the plume is apparent. 
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Figure 27. NE RC: 0-36 concentration isovolumes at 1 Ma 
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Figure 27. NE-RC: Cl-36 concentration isovolumes at 1 Ma 
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The 3DSU model was used only to develop capture ratios for the well. A constant unit mass 
flow rate (1 g/a) was applied to the source location at the point where the repository shaft reaches 
the more permeable shallow bedrock groundwater zone. Figure 28 is a cross-section showing 
simulated steady-state concentrations. 
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Figure 28. 3DSU NE-RC: Concentration distrilbution for a steady source at XA in. Well 
location is shown by vertical pink line at X=-500 m. 
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The water well captures a small portion of the plume, about 1%. The remainder of the mass exits 
the model into the lake compartment. 

7.2 Inadvertent Human Intrusion Case and BI-GR2) 

The human intrusion cases are based on a modified NE-RC case where an exploration borehole 
is inadvertently drilled from surface into the repository and then abandoned (II-GR1), and 
through the repository into the Cambrian formation and then abandoned (1-11-GR2). 

In the I-D-GR1 case, there is little to no flow from repository up through the abandoned borehole 
due to the small borehole size, low rock permeabilities and rock mass underpressure. 

In the I-D-GR2 case, pressurized formation fluid from the Cambrian is transmitted into the 
repository and then up to surface. Concentrations of C1-36 at various times on a vertical slice 
through the borehole are presented in Figure 29. These results indicate that a pulse of C1-36 is 
transported from the repository up the exploration borehole, where it is expelled outwards into 
the moderately permeable Silurian formations. Concentrations within these formations 
subsequently decrease over the remaining majority of the 1 Ma performance period. 
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7.2 Inadvertent Human Intrusion Case (HI-GR1 and HI-GR2) 

The human intrusion cases are based on a modified NE-RC case where an exploration borehole 

is inadvertently drilled from surface into the repository and then abandoned (HI-GR1), and 

through the repository into the Cambrian formation and then abandoned (HI-GR2).   

In the HI-GR1 case, there is little to no flow from repository up through the abandoned borehole 

due to the small borehole size, low rock permeabilities and rock mass underpressure. 

In the HI-GR2 case, pressurized formation fluid from the Cambrian is transmitted into the 

repository and then up to surface.  Concentrations of Cl-36 at various times on a vertical slice 

through the borehole are presented in Figure 29.  These results indicate that a pulse of Cl-36 is 

transported from the repository up the exploration borehole, where it is expelled outwards into 

the moderately permeable Silurian formations.  Concentrations within these formations 

subsequently decrease over the remaining majority of the 1 Ma performance period. 
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Figure 29. C1-36 concentration at 50 ka, 100 ka, 500 ka, and 1 Ma 

7.3 Case Comparison 

Case results of the detailed groundwater modelling are compared based on mass flow rates of Cl-
36 into the Shallow Bedrock Groundwater Zone or horizontally through the permeable Silurian 
formations. As a point of reference, the very small rate of C1-36 deposition due to natural 
atmospheric generation and deposition over the repository footprint is also shown on the 
comparison figures as natural background. 

Figure 30 compares results for all normal evolution cases. It is noteworthy that for the NE-RC 
case, which is the reference case and is considered the most likely case, the mass flow rate to the 
Shallow Bedrock Groundwater Zone is below the plot cut off limit of 10-'3 g/a. It is also 
noteworthy that the same is true of the NE-HG case, which is the only Normal Evolution case 
incorporating horizontal flow in the moderately permeable Silurian formations. The green 
dashed line for this case indicates the mass flow intercepted by the groundwater flowing in the 
moderately permeable Silurian formations, and the effectiveness of this interception as a 
mechanism for eliminating the transport of radionuclides from the repository towards the shallow 
bedrock. 
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Figure 29. HI-GR2: Cl-36 concentration at 50 ka, 100 ka, 500 ka, and 1 Ma 

 

7.3 Case Comparison 

Case results of the detailed groundwater modelling are compared based on mass flow rates of Cl-

36 into the Shallow Bedrock Groundwater Zone or horizontally through the permeable Silurian 

formations.  As a point of reference, the very small rate of Cl-36 deposition due to natural 

atmospheric generation and deposition over the repository footprint is also shown on the 

comparison figures as natural background.   

Figure 30 compares results for all normal evolution cases.  It is noteworthy that for the NE-RC 

case, which is the reference case and is considered the most likely case, the mass flow rate to the 

Shallow Bedrock Groundwater Zone is below the plot cut off limit of 10
-13

 g/a.  It is also 

noteworthy that the same is true of the NE-HG case, which is the only Normal Evolution case 

incorporating horizontal flow in the moderately permeable Silurian formations.  The green 

dashed line for this case indicates the mass flow intercepted by the groundwater flowing in the 

moderately permeable Silurian formations, and the effectiveness of this interception as a 

mechanism for eliminating the transport of radionuclides from the repository towards the shallow 

bedrock. 

 



Waste Management; Decommissioning and Environmental Restoration for Canada's Nuclear Activities, September 11-14, 2011 

10-3

10-4

co 
104

-6") 10-6

O 10-7

N 
co 

10-9

10-s. 

(7) 10-1° - 

- 

- 

-

10-11 • 

NE-RC 
NE-SBC 
NE-EDZ1 
NE-EDZ2 
NE-AN1 
NE-AN2 
NE-HG 

NE-PD-GT5 
NE-PD-RC 

Mass Flow Direction 
— Vertical at Salina F 
--- Horizontal in Silurian 

10-12 -
10-13

101

Below CI-36 Natural Background 

102 103 104 105 106
Time (a) 

Figure 30. All NE Cases: 0-36 mass flow rate 

Of the Normal Evolution cases, the three cases with increased permeability of the shaft sealing 
materials (NE-EDZ1, NE-EDZ2, and NE-GT5) result in the greatest mass flows into the Shallow 
Bedrock Groundwater Zone, which are still very small. 

Figure 31 compares peak mass flow rates for all disruptive scenario cases. The results indicate 
that the mass flow into the Shallow Bedrock Groundwater Zone peaks at approximately 104 gilt 
in the HI-GR2 case, and would be less than the natural cosmogenic background CI-36 deposition 
rate in all other cases. The figure clearly indicates that radionuclide transport in groundwater 
will be effectively zero for nearly all cases, including the cases assuming a vertical fault near the 
repository (VF). Only inadvertent drilling through the repository and into the Cambrian (HI-
GR2) would result in perceptible concentrations being released into the Shallow Bedrock 
Groundwater Zone. 
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Figure 3L Peak CI-36 Vertical Mass Flow across the Salina F for all Cases 
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Figure 30. All NE Cases: Cl-36 mass flow rate 
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8. CONCLUSIONS 

The long-term performance of the proposed L&ILW repository at the Bruce nuclear site has been 
assessed with the use of detailed numeric models of gas transport and of groundwater flow and 
transport of radionuclides. Reference and variant cases were undertaken for the Normal 
Evolution Scenario, and for Disruptive Scenarios. 

Two-phase flow modelling results indicate that the site geosphere acts as an effective barrier to 
gas flow. The shaft seals are also an effective barrier, and, in conjunction with the higher 
permeability Guelph Formation, prevent the transport of any free gas to the Shallow Bedrock 
Groundwater Zone. Gas reaches the shallow groundwater in small amounts under some higher 
gas generation rate cases as dissolved in groundwater. Only under disruptive scenarios does gas 
reach the shallow groundwater, and then only if extreme assumptions are made about the 
properties of the degraded shaft materials that characterize the scenarios. 

The results of the groundwater flow and transport modelling indicate that in all Normal 
Evolution Scenario cases contaminant mass transport from the repository via groundwater would 
be diffusion dominated and that releases to the Shallow Bedrock Groundwater Zone are 
effectively zero. The only case with appreciable groundwater releases was the very unlikely case 
of Inadvertent Human Intrusion, where an exploration borehole is drilled from ground surface 
through the repository and into the pressurized Cambrian. 

As noted in the introduction, the potential impact of these scenarios was addressed through 
assessment modelling [7]. 
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