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Abstract 

Magnetized Target Fusion (MTF) is an alternative approach to fusion which proposes to meet 
Lawson’s criterion for net gain by the rapid compression of a compact toroid plasma using a 
conductive metal wall.  This paper provides an overview of the science behind MTF and 
General Fusion’s systematic development program to design, test, and demonstrate the ability to 
produce energy using its acoustic MTF technology. 

1. Background 

Magnetized Target Fusion was first proposed in the 1970’s and the US Naval Research Lab did 
significant work on MTF through the LINUS program [1]. Working in an intermediate regime 
of plasma density and confinement, MTF is recognized for its low cost potential. LINUS in 
particular, with its use of compressed gas for compression and thick liquid metal liner provided 
an elegant solution to traditional fusion challenges of heat extraction, tritium breeding, and 
neutron flux on structural components [2],[3].  Unfortunately the short lifetime of compact 
toroid plasmas and slow compression times did not allow the LINUS concept to be constructed 
using the technology of the day. 

General Fusion is pursuing acoustically driven magnetized target fusion technology that it 
developed following reviews of the literature on the promise of MTF, starting from the LINUS 
concept.  Using modern servo control systems, General Fusion is making use of impact to create 
an acoustic wave in a thick liquid metal liner and speed up compression a thousand fold 
compared to LINUS, to less than 80 µs.  When combined with modern compact toroid plasma 
technology allowing the creation of plasmas with lifetimes over 100 µs, an MTF reactor with 
the potential to achieve net gain can be developed today. 

2. System concept 

In designing an appropriate development program, careful consideration was given to the scale 
of experiments that would verify MTF for the lowest risk and cost.  General Fusion is a private 
company, and it was determined that demonstrating net energy gain would be necessary to allow 
the company to secure the resources for a follow-on commercialization program.  We rejected 
pursuing smaller scale MTF research because cost savings were minimal and a multi-step 
timeline would take longer.  Finally, net gain equivalent tests are required to address the largest 
technical risks and we determined it was best to undertake those tests as quickly as possible.  

General Fusion’s prototype system was designed to achieve net gain and demonstrate economic 
viability, assuming worst case scenarios for plasma heat loss (General Fusion has assumed 
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Bohm losses, an assumption external reviewers have suggested is overly pessimistic).  In 
General Fusion’s MTF concept a small, low temperature, and relatively low density magnetized 
plasma (40 cm, 100 eV, beta 10%, 1017 particles/cm3) is created in a metallic enclosure and 
compressed in <100 µs to 4 cm in size, 10 keV, 1020 particles/cm3.  Peak compression is 
maintained for a few microseconds, satisfying Lawson’s criterion [4].  Achieving these 
parameters requires compression energy levels of up to 100 MJ.     

The lowest cost option, by an order of magnitude, was a low repetition rate, compressed air-
driven piston system.  Current MTF research at Los Alamos National Labs and the Air Force 
Research Labs takes advantage of the Shiva Star capacitor bank [5], however in General 
Fusion’s case electrical drivers were rejected because the cost of large capacitor based pulse 
power supplies - at $2 to $5 per joule - resulted in an estimated cost of over $200 million.  To 
prove the physics and achieve net gain on a single-shot basis, General Fusion aims to construct a 
piston-driven system capable of only 1,000 cycles at an estimated total cost of $35 million. 

 

Figure 1: General Fusion's Acoustic MTF Reactor Concept 
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The pneumatically driven system is General Fusion’s principal innovation. It creates a focused 
shock wave for compressing the plasma with a blanket of liquid lead-lithium.  The major 
advancement over other thick liner systems is the use of servo controlled impact to increase the 
compression power 1,000 fold (each piston is accelerated in 80 ms and at impact transfers its 
energy in 80 µs) [6].  Based on computer simulations, this will require synchronization of piston 
impacts to within 20 µs. 

For a future power plant, economics, neutronics, tritium supply, and overall reactor energy 
density do need to be considered.  

The integral liquid lead-lithium liner provides a number of key benefits.  As an atomic liquid, 
nothing is destroyed by the fusion reaction avoiding the “kopeck” problem (to be economically 
viable, pulsed systems, including both MTF and IFE, must generate significantly more revenue 
with each pulse than the cost of any hardware consumed). The eutectic absorbs the bulk of the 
fusion products through elastic scattering and provides a straightforward means of extracting the 
energy.  The thick blanket significantly shields the wall by reducing the neutron flux on the 
structure and by lowering the neutron energy spectrum [7].  The 4 pi coverage provides an 
enhanced tritium breeding ratio (TBR) of 1.6 to 1.8 [8].  The neutron multiplication factor 
results from the Pb(n,2n) reaction and also from the 7Li + n → 4He + 3H + n reaction as 
diagramed by Moyer [9].  The challenge with a thick Pb-17Li liner is likely to be too much 
tritium production. 

General Fusion is proposing a system with a core power density of 40 MW/m3.  This would be 
similar to reactors such as Westinghouse’s AP1000 with a power density of 23 MW/m3.  Other 
proposed designs are much higher: the Russian SVBR-100 lead-cooled reactor has a design spec 
of 160 MW/m3, and proposed fusion power plants such as HYLIFE-II indicate densities of 50 
MW/m3 to 100 MW/m3 [10],[11]. 

3. Principal risks 

The biggest risks to the project are plasma cooling due to plasma instability during compression 
and plasma/wall interaction leading to plasma contamination by high Z materials.  Heat loss via 
plasma instability/turbulence has been experimentally derived and scaling laws formulated. 
Unfortunately, the scaling laws for compact toroid plasmas have only been verified to plasma 
densities of ~1017 particles/cm3; they are extrapolated for higher densities.  Further 
experimentation at fusion relevant densities is required to verify plasma behaviour.  

Regarding plasma/wall interaction, it can be calculated that contamination levels of 10% for Li 
and 0.01% for Pb can be tolerated for the expected compression timescales in a General Fusion 
system.  Indications are that if Bohm-like diffusion is present then a protective layer of Li will 
have to be implemented; for gyroBohm diffusion it is likely that mixing will be acceptable even 
for Pb [12].  General Fusion is undertaking a full simulation of plasma compression including 
plasma/wall mixing in partnership with the All Russian Research Institute for Experimental 
Physics (VNIIEF).  
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Both the plasma stability and plasma/wall interaction risks have been thoroughly discussed with 
all of General Fusion’s external advisors.  The consensus is that neither issue is expected to 
prevent the system from working however experimental verification is required to be certain.  
General Fusion is focusing on mitigating these risks with our (i) development and 
experimentation program, (ii) simulation work in collaboration with VNIIEF and others, and 
(iii) cooperative research and development agreement (CRADA) for ongoing MTF research at 
Los Alamos National Labs (LANL).  Plasma experiments at LANL will use electrically driven 
implosion of an aluminum liner, and the results will be used to verify plasma scaling laws at 
densities from 1016 and up to 1019 particles/cm3 [13],[14],[15],[16]. 

4. Development program 

General Fusion is pursuing a methodical project plan, first scaling up and constructing major 
components, then verifying component performance, and finishing with full system 
construction.  In parallel, design and experimentation will be matched and calibrated against 
computer simulation work internally and in partnership with other institutions.  The entire 
program is expected to take at least four years to complete. 

Our primary objectives for the first two years are: 

• Construct a full scale plasma injector, producing a spheromak of 1017 particles/cm3 and 
100 eV [17]. 

• Construct 14 full scale pistons assembled onto a scale version of the liquid lead vortex 
chamber to produce a symmetrical driven and partially spherical implosion in liquid Pb-
Li. 

• Magneto-hydrodynamic (MHD) plasma simulations, calibrated to our plasma injectors. 
• Hydrodynamic simulations of acoustic driven implosions in two and three dimensions, 

calibrated to piston experiments. 

Furthermore, General Fusion is undertaking low cost chemically driven experiments to rapidly 
compress a magnetized plasma target. The literature discusses such tests; however, we have 
found no experimental results in open publications [18],[19].  With the support of NRC-IRAP, 
field trials to verify plasma compression at small scale (10 keV, 1017 particles/cm3) are expected 
to be completed by July, 2011.  Larger scale verification tests (10 keV, 1020 particles/cm3) 
would follow towards the end of 2011. 

Construction of the full scale piston-driven system will only proceed once the above work is 
complete and calibrated computer simulations show that the full scale system will achieve net 
gain. 
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5. Program status 

General Fusion began its development program in September, 2009 after securing a significant 
venture capital investment.  Per the program, the first plasma injector was constructed and 
began operation in May, 2010.  Testing on this injector has continued with power gradually 
increased to the full design power of 2.4 MJ. 

 

Figure 2 

General Fusion’s plasma injector including; 2.4MJ (100 GW) pulse power supply 
(22kV formation, 44kV acceleration), programmable pulse shaping control, 1 MW 
DC stuffing flux power supply, and diagnostics (Thomson scattering, X-ray photo 
diodes, triple Langmuir probe, 5 interferometer chords, >12 Rogowski coils, >50 
B-dot probes with in-situ integration, high resolution time resolved spectroscopy).   

The device continues a long tradition of Canadian plasma injector innovation and 
experimentation. The first non-disruptive CT injection demonstrated on TdeV at 

the CCFM using the CTF, designed and constructed under a contract with the 
Canadian Fusion Fuels Technology Project [20],[21],[22].  A smaller compact 

torus injector built with funding from NSERC was installed on STOR-M in 1995 
[23],[24],[25]. Compact toroid fueling designs proposed for ITER by Canadian 

scientists [26],[27]. 
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Inset: NIMROD simulation of CT formation and acceleration in a plasma injector. 

General Fusion has also constructed two full scale acoustic driver systems. The first is used for 
servo control development and uses and air damping system to absorb the impact energy.  This 
system has demonstrated successful servo control of impact timing to within ±8 µs.  The second 
system (shown below) incorporates a liquid metal system and has been used to verify impact of 
pistons on liquid lead.  Simulations and measured results of acoustic wave propagation through 
the lead in this system agree to within 10-20% of absolute values.   

 

Figure 3 

Single 500 kJ (5 GW) acoustic driver including: molten metal (400 ˚C) target 
chamber, Pb/Li mixing station, molten metal storage pot, and pumping system. 

Inset: Mechanical drawing superimposed with LS-Dina simulation of acoustic 
wave impact through molten lead. 

General Fusion is currently designing a 14 piston assembly to test the synchronized impact and 
collapse of a vortex in liquid lead-lithium.  This system will be completed in 2011.  Results from 
this “ring” system will be used in combination with simulation to design the full scale prototype 
reactor. 
 
Understanding vortex dynamics and stability will also be important for the design of a full scale 
prototype reactor.  Through its project with the University of Victoria, General Fusion has 
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constructed a 1/3 scale acrylic sphere water vortex apparatus.  Vortex simulations and behaviour 
is being studied (images below).  

 

Figure 4 

Vortex simulation and 1/3 scale model with water vortex 
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The progress to date represents the work of a dedicated team that now includes over thirty-five 
engineers and scientists, including ten Ph.D.s in physics.  General Fusion continues to build our 
team and is actively recruiting plasma physicists and magneto-hydrodynamic simulation 
researchers in Canada and abroad. 

General Fusion firmly believes that there are areas where Canadian researchers and industry 
have expertise that could assist our efforts.  From the beginning, General Fusion has been open 
with the scientific community and we invite interested scientists to contact us, to share ideas, to 
debate, and to pursue good science with the hopes of advancing the prospects of fusion power to 
the benefit of all Canadians. 
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