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Abstract 

Accurate prediction of the neutron flux and power at the fuel pin level rather than at the fuel-
assembly level requires, in principle, lengthy many-group transport-theory calculations using a 
detailed (fuel-pin level) geometrical representation of the core.  Many-group fine-mesh diffusion 
theory, in conjunction with advanced fuel-pin-cell homogenization techniques, can also be used 
successfully to predict individual fuel pin powers but the computational effort is still sizeable 
because of the many regions and groups involved.  A three dimensional diffusion code was 
developed which reduces the time taken by such full-core fine-mesh fine-group diffusion 
calculations by applying the finite-element method to the discrete form of the many-group fine-
mesh diffusion equation and thus reducing the number of unknowns.  Preliminary tests performed 
on a highly-heterogeneous three dimensional three-group model found the code to produce pin 
power results with a maximum error of 3.5% of the maximum pin power value, with an eight-fold 
reduction in computational time compared to a regular full-core fine-mesh calculation.   

1. Introduction 

Finding the neutron flux in the entire core of a nuclear power reactor is a challenging computational 
problem because of the large size and strong heterogeneity of the reactor core.  The general problem 
of finding the neutron flux is most accurately addressed in multi-group transport theory using fine 
energy groups (100-300 groups) and a detailed geometrical representation of the core where each 
fuel pin is represented as a separate region. Various methods exist for discretizing the transport 
equation in angle, energy, and space.  All of them, however, are computationally intensive and 
therefore only practical for smaller-size problems (usually bi-dimensional representations of a fuel 
assembly/bundle and the moderator surrounding it), but not for the entire reactor core.   

To reduce the size of the problem, full-core calculations are usually performed in diffusion theory 
and for an approximate geometrical representation of the core obtained by homogenizing the 
neutronic properties over relatively large, fuel-assembly-size, sub-domains, and condensing them 
into few (usually two) coarse energy groups.  What this means in practice is that full-core codes 
used for day-to-day design can provide average quantities over entire fuel assemblies (bundles) but 
not values for individual fuel pins.  The fuel-pin level quantities can be reconstructed from 
assembly-average quantities using various approximate methods.   

It is still possible to obtain fuel-pin-level flux and power distributions directly from diffusion theory 
calculations if pin-level rather than assembly-level homogenization is performed and if fine group 
energy discretization is used.  To ensure diffusion-theory results are close to transport results, 
homogenization and group condensation have to be performed using some advanced 
homogenization technique, such as superhomogenization [1].  Such diffusion calculations are still 
time consuming because of the large number of spatial regions and many energy groups involved.   
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The work presented here reduces the time taken by such full-core fine-mesh fine-group diffusion 
calculations by applying the finite-element method to the discrete form of the multigroup diffusion 
equation and thus reducing the number of unknowns. 

2. General approach 

The Discrete Heterogeneous Finite Element Method (DHFEM) presented here follows the outline of 
the usual (continuous, homogeneous) Finite Element Method (FEM), but starts from the fine-group, 
fine-mesh, mesh-centered finite-difference form of the diffusion equation, written in operator form 
as: 

 Φ
1
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In Eq. (1), ),,,(Φ gkji  represents the flux vector whose elements are the flux in fine-group g at 
the center of Cartesian fine-mesh box ),,( kji .  Μ  and F  represent the fine-group fine-mesh 
discrete forms of the loss operator and production operator defined, using standard notations, as: 
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The leakage operator, 
 
L , is defined as the sum of the leakage in all directions: 
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The directional leakage operator for the x direction, xL , is defined as [2]: 
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yL  and zL  are defined analogously.  

In the above equation, hx, hy and hz represent the fine-mesh size in each direction.  The DHFEM 
method proceeds by dividing the volume of the reactor into large parallelepiped-shaped elements.  
The element corners are called nodes.  Each element is, in turn, subdivided into Cartesian 
subregions, each subregion corresponding to one fine-mesh box of the finite-difference grid, 
indexed by the triplet ),,( kji .  Normally, an element is chosen to encompass a fuel assembly in the 
x-y plane and extend approximately 0.5m in the Z direction.  A sub-region is usually chosen to 
consist of a homogenized fuel-pin cell (pin plus coolant) or of pure moderator/coolant.  The actual 
choice of elements and subregions is flexible and depends on the configuration being analyzed.  The 
energy is divided first into coarse groups, indexed by G.  Coarse groups are, in turn, subdivided into 
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fine groups indexed by g.  The fine-group structure is the same as in the finite-difference 
discretization used in Eq. (2).  A representation of the core sub-division into elements and 
subregions is shown in Fig. 1. 

 

 

Figure 1:  Elements, nodes and subregions for a three-dimensional geometry 

 

The solution of the discretized multi-group diffusion equations is sought as a linear combination of 
discrete basis (trial) functions of space and energy, one for each node and coarse energy group: 

 
G n

GnGn gi,j,kgi,j,k ),(ψ),( ,,                         (6) 

In Eq. (6) ),(ψ , gi,j,kGn  is the (discrete) basis function corresponding to node n and coarse energy-

group G. Gn , are the expansion coefficients which are to be determined.   

The basis function ),(ψ , gi,j,kG,n  is defined as a sum of eight elementary basis functions, G,en, , each 

of which is nonzero only in one of the eight elements surrounding the node n and only for fine 
groups g belonging to coarse group G.  
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Each basis function can be regarded as consisting of eight elementary basis functions “glued” 
together at the common node.  Consequently, each elementary basis function n,G,e  can be regarded 
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as a “branch” of the basis function Gn,ψ  which is non-zero only inside a single neighbouring 

element e and for fine groups g belonging to coarse group G.   

In analogy to the regular FEM, each discrete elementary basis function n,G,e  is constructed such 

that the energy integral of its continuous counterpart is equal to one at node n defined by its 
coordinates ),,( nnn zyx : 

 1, 
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nnnn,G,e g,z,yx )(  (8) 

and it vanishes at all the remaining seven nodes (corners) of element e.  Consequently, each of the 
coefficients n,G  represents the amplitude of the flux in coarse group G, at node n.   

In general, the choice of basis (trial) functions depends on the problem that needs to be solved. 

Substituting Eq. (7) into the finite-difference-discretized diffusion equation the following is 
obtained: 
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Next, just as for the regular finite element method, a weighted residual method is applied by taking 
the inner product of Eq. (9) with weight functions )( gi,j,kwm,H , .  

The resulting homogeneous linear system is: 
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The discrete inner product for two arbitrary vectors,   and ψ , is defined as: 
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It will be noted that the inner product defined by Eq. (11) covers both space and energy.    

Eq. (10) defines a generalized eigenvalue-eigenvector problem with eigenvalue 
effk

1  and 

eigenvector defined by its components n,G .  It can be rewritten, with obvious notations, as: 
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Because each basis function )( gi,j,kn,G ,ψ  is only non-zero in the eight elements neighbouring node 

n and inside coarse group G, the matrices M and F are sparse.   
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Solution of Eq. (12) proceeds by inverse power iteration.  At each inverse power iteration, iterations 
on the coarse-group scattering source are performed.  For each such scattering-source iteration the 
flux in each coarse group is solved using the Orthomin algorithm.  No acceleration techniques are 
currently used.  Once coefficients n,G  are found, the fine-mesh fine-energy-group flux is 

reconstructed using Eq. (6). 

The DHFEM allows the basis functions to be chosen such that they capture the fine-mesh detail of 
the flux distribution.  However, the number of unknowns is only of the same order of magnitude as 
the number of nodes times the number of coarse groups, therefore much smaller than the number of 
unknowns for a full-core fine-mesh fine-group solution.  The DHFEM thus offers fine-mesh and 
fine group detail at coarse-mesh coarse-group computational cost. 

3. Choice of elementary basis functions and weight functions 

The choice of elementary basis functions is flexible and has to be made depending on the type of 
problem to be solved.  For the current implementation of the code, each elementary basis function 

n,G,e was defined as the product between a (discrete) multivariate polynomial defined in element e 

and the single-element flux shape for element e. 
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For any node n that is a corner of element e, the polynomial Pn,e is expressed as: 
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In Eq. (14) ),,( kji zyx  represent the coordinates of the center of the fine-mesh box ),,( kji , 

),,( nnn zyx  represent the coordinates of node n and exl , , eyl ,  and ezl ,  represent the lengths of the 

sides of element e.  It can be seen that the (continuous) polynomial defined by Eq. (14) equals one at 
node n and zero at all other seven corners of element e. In fact, the polynomial in Eq. (14) vanishes 
on all three faces of element e that are opposite node n.  Consequently, the elementary basis function 
defined by Eq. (13) also vanishes on the three element faces opposite the node.  In Eq. (13), the 
single-assembly (single-element) flux shape ),,,(0 kjige  is obtained from single-element 

calculations with reflective boundary conditions and it is normalized so it satisfies Eq. (8).  If the 
element e is not symmetric, the normalization may have to be different for each of its corners 
(nodes) n.  For the current code implementation, the weight functions were chosen to be equal to the 
basis functions. 

4. Calculations and results 

4.1 Test model 

For a preliminary test of the code, a simple, yet computationally challenging, model was used.  
Three energy groups were used for both the fine-group and coarse-group representation.  Because 
the fine- and coarse-group structures are identical, the group-condensation abilities of the DHFEM 
were not tested with this model.  The geometrical model consists of 10 x 10 x 10 elements, each 40 
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cm x 50 cm x 60 cm in size.  Each element is subdivided into 5 x 5 x 5 subregions.  The core 
consists of an inner zone (8 x 8 x 8 elements) made up of “type 2” elements and an outer zone made 
up of “type 1” elements.  Cross-sectional views of the core showing the distribution of element 
types are displayed in Fig. 2.  Each element, regardless of its type, consists of a central region (3 x 3 
x 3 sub-regions) and a peripheral region.  The peripheral region of “type 1” elements has material 
properties derived from zero-burnup CANDU fuel-bundle-average cross sections.  The peripheral 
region of “type 2” elements has material properties derived from mid-burnup CANDU fuel-bundle-
average cross sections.  Material properties of the central regions of both “type 1” and “type 2” 
elements are identical to those of their respective peripheral regions, with the exception of the 
thermal (group 3) absorption cross section which is four times higher than its corresponding 
peripheral absorption cross section.  This choice creates a strong heterogeneity in each element, to 
test the code’s ability to capture strong local flux and power variations.  

 

 

Figure 2: Element-type distribution in the core. 

4.2 Results and interpretation 

DHFEM results were compared (on a sub-region by sub-region basis) with fine-mesh finite 
difference results, used as reference, and to regular, homogeneous, FEM results.  The latter were 
obtained by first homogenizing each element and then applying a FEM solution to the element-
homogenized model.   

The effective multiplication constants and execution times for a 2.13 GHz Intel processor are shown 
in Table 1.  The root mean square percent errors, calculated as: 
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are shown in Table 2, together with the error in the effective multiplication constant.  The maximum 
errors as a percent of the maximum value, calculated as  
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are shown in Table 3.  

Finally the maximum local percent errors, calculated as: 
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are shown in Table 4.   

 
METHOD keff Execution time(min) 
Reference 0.72632 30 
DHFEM 0.72582 4 

FEM 0.72599 4 
 

Table 1: Effective multiplication constant and execution times 
 
 

METHOD keff error (mk) 1 RMSE% 2 RMSE% 3 RMSE% Power RMSE% 

DHFEM -0.5 0.6 0.6 0.8 0.7 
FEM -0.4 2.9 2.0 7.0 6.5 

 
Table 2:  Root mean square percent errors 

 
 

METHOD 1 MAXE% 2 MAXE% 3 MAXE% Power MAXE% 

DHFEM 2.64 2.69 3.64 3.36 
FEM 8.02 5.54 16.30 15.40 

 
Table 3: Maximum percent errors 

 
 

METHOD 1 MAXLE% 2 MAXLE% 3 MAXLE% Power MAXLE% 

DHFEM 35.2 17.3 68.1 65.3 
FEM 32.1 28.9 89.9 87.4 

 
Table 4: Maximum local percent errors 
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As an example of the code’s ability to reproduce fine spatial variations, Fig. 3 shows the power 
profile along the z axis (variable k) at i=j=23.  

 

 

Figure 3: Axial power profile (i=23, j=23, variable k) 

Also by way of example, the z profile of the power integrated over each x-y plane, 


ji

int kjiPkP
,

),,()( ,  is shown in Fig. 4. 
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Figure 4: Axial profile of x-y integrated power  

Table 1 shows an eight-fold reduction in execution time for the DHFEM compared to the fine-mesh 
calculation (The number of groups is the same for both methods for the test model that was used.).  The 
somewhat large execution times displayed by all methods can be explained by the absence of any 
acceleration technique.  The reduction in execution time achieved by DHFEM depends, to a large 
degree, on the number of subregions in each element and on the number of fine groups in each coarse 
group.  In this case, there were 125 subregions in each element.  Larger numbers of subregions are 
expected to yield more substantial reductions in execution time.  Similarly, if true fine-group 
calculations are used for the reference, the reduction in execution time is expected to be more 
pronounced.   

The errors in keff are similar for the DHFEM and regular FEM and below 1mk.  This result is 
expected since keff  is an integral quantity which depends only weakly on the detailed flux shape.  
Table 2 shows that, for each energy group, the DHFEM root mean square error is below 1% of the 
maximum flux value in that group.  A similar behaviour is observed for the power.  The larger 
errors for the regular FEM are to be expected since it does not account for fine spatial variations.  
Table 3 shows that, for all energy groups, maximum errors for DHFEM are below 3.7% of the 
maximum flux value in that group.  The same is true for the power.   The large values for the 
maximum local percent error seen in Table 4 are attained on the periphery of the model, where flux 
values are very low.  Consequently, they are not considered to be a concern.  Figures 3 and 4 
illustrate graphically the excellent ability of the code to capture fine spatial detail. 
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5. Conclusion and future investigations 

A three-dimensional discrete heterogeneous finite element code was developed which promises to 
offer accurate values for individual pin powers for the entire core at a computational cost 
comparable to that of codes using assembly-homogenized core models.  Preliminary testing shows 
that the code is reasonably accurate.  Further testing needs to be performed and acceleration 
techniques need to be investigated and implemented.   

6. References 

[1] A. Hebert "A Consistent Technique for the Pin-by-Pin Homogenization of a Pressurized 
Water Reactor Assembly", Nucl. Sci. Eng. 113, 1993, pp. 227-238 

[2] E. Nichita, K. Zabienski and M. Gravel, "Three-Dimensional Two-Energy Group Finite-
Difference Neutron-Diffusion Code with Discontinuity Factors , Proc. 28th Annual Conference 
of the Canadian Nuclear Society, Saint John NB, 2007, June 3-6. 

[3] R. S. Modak and A. Gupta "New applications of Orthomin algorithm for K-eigenvalue 
problem in Reactor Physics ", Ann. Nucl. Energy., 33, 2006, pp. 538-543 

 

32nd Annual Conference of the Canadian Nuclear Society 
35th CNS/CNA Student Conference 

June 5 - 8, 2011 
Sheraton on the Falls, Niagara Falls, Ontario




