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Abstract 

Steam generators (SG) are periodically inspected to maintain high safety and integrity of the 
heat transport system in the nuclear plant. The integrity of SG tubing is affected by various 
degradation mechanisms, such as wear and stress corrosion cracking (SCC). SG tubing 
integrity assessment is periodically performed to ensure the tubing degradation does not 
exceed the structural limit in the upcoming operation cycles. This paper presents a 
probabilistic approach for integrity assessment of SG tubing with fretting wear degradation 
and highlights the importance of correct modeling inspection uncertainties, such as flaw 
sizing error, in the prediction. A case study is presented using actual data from a nuclear 
station, which illustrates the effectiveness of the proposed method. 

1. Introduction 

Steam generator (SG) tubing is an integral part of the reactor coolant pressure boundary, 
which maintains the pressure of the primary system and isolates the radioactive fission 
products in the primary coolant from the secondary system. The SG tubing suffers from 
various degradation mechanisms, such as corrosion, fretting wear and SCC. The SG tubing 
degradation can have an adverse impact on safety and reliability of the nuclear plant. For 
example, the SG tube break can cause a containment bypass accident. The tubing integrity 
assessment is thus required for the assurance of high safety and performance margins in short 
term [1], and optimizing the life cycle management of SG fleet in the long term. 

The operational assessment of SG tubing is intended to demonstrate that the tube integrity 
performance criteria will be met throughout the next inspection interval. The operational 
assessment considers the projected future condition of the tubes based on the latest inspection 
results and predicted future growth rate. If the future state of any existing flaw projected to 
the end of evaluation period does not meet the specified acceptance criteria, the tube needs to 
be removed from the service by plugging. 

The nuclear industry in Canada and the U.S. has undertaken extensive research to develop 
fitness for service criteria and guidelines for inspection and plugging of tubes in steam 
generators. The operating experience suggests that flaw size and flaw growth rate in steam 
generators tend to be highly variable or uncertain, which confounds the prediction of future 
growth of flaws. Another element that affects the accuracy of growth prediction is the flaw 
sizing error associated with the inspection method. The sizing error is a results of (1) the error 
associated with the probe (e.g., hardware limitations), and (2) subjectivity associated with the 
data interpretation (e.g., calibration curves). 
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To account for uncertainties associated with degradation and flaw inspection process, the 
nuclear industry has gradually moved towards adopting the probabilistic methods for the 
assessment of SG tubing. The flaw growth rate is an important element of the assessment. The 
reason is that conservative predictions will result in frequent inspection/maintenance outages 
resulting in loss of efficiency, while non-conservative prediction may lead to potential safety 
problems. The basis for the growth rate estimation is a set of flaw sizes measurements 
obtained from periodic inspection of SG tubing. Since measurements are contaminated by 
random sizing error, a precise estimation of the flaw growth rate becomes a challenging task. 

A full Monte Carlo simulation based reliability analysis of steam generators is not practical 
and the input required for simulations model, such as the growth, still needs to be estimated 
from the contaminated data set. The industry has developed simple approximate methods for 
considering the impact of sizing error in predicting the flaw growth rate, flaw repair limit, and 
the time for next inspection. However, the degree of conservative associated with these 
methods in comparison to more precise solutions has not been evaluated. Although simple 
approximate methods may be adequate for short term operational assessment, their use in long 
term life cycle management can lead to erroneous results. 

The objectives of this paper are to (1) Develop an accurate probabilistic method for the 
evaluation of flaw growth rate, and (2) Evaluate the accuracy of currently used method of the 
flaw growth rate estimation. 

2. Industry Practice 

2.1 Background 

There are three basic elements of the SG tubing integrity assessment [2, 3]: (1) degradation 
assessment, which documents status of the plant specific degradation mechanisms, such as 
SCC, pitting, and/or wear, in support of planning future inspection outages, (2) condition 
assessment, which is a backward assessment to confirm that adequate tube integrity was 
maintained during the previous inspection interval. It is an evaluation of the as-found 
condition of tubing relative to integrity acceptance standards, and (3) operational assessment, 
which is a forward looking prediction of the tubing condition to ensure that acceptance 
standard will be met during the next inspection interval. In contrast, life cycle management 
(LCM) is a long term assessment that includes the prediction of the condition of tubing over 
next several outages, and optimization of future inspection, maintenance and replacement 
activities. 

The structural integrity performance criteria are typically based on the concept of maximum 
tolerable flaw size (MTFS) or the structural limit (SL). The MTFS ( am7Fs ) is the maximum 

size of a part through-wall flaw that satisfies the acceptance criterion including the required 
safety factors on the load. The MTFS for various types of flaws are derived from mechanistic 
models of tube burst and leakage [3]. For example, MTFS for fretting/wear flaw is 71% tw 
(through wall) [3]. A similar concept of structural limit is used to define an acceptable flaw 
size based on a tube burst model [4]. 
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In the operational assessment, acceptability of an existing flaw is judged based on the repair 
limit. The repair limit ( a REp ) is the NDE measured flaw size at or beyond which the tube must 

be repaired or removed from service by plugging so that the performance criteria will be met 
at the end of next inspection interval [2]. The repair limit for a specified inspection interval of 
t EFPY is calculated as [3] 

a = a  (t) REP MTFS ERR G (1) 

where a ERR is the sizing error associated with the non-destructive evaluation (NDE) tool and 
aG(t) is the flaw growth during the next inspection interval, t. 

The operational assessment (OA) can be approached in two ways. If the time of next 
inspection, tNp , is fixed, then all existing flaws with size a a REp must be removed from 

tube plugging [3]. On the other hand, tNp can be back calculated such that the worst flaw 

(a wRE ) in the population does not grow beyond the MTFS [2]. 

2.2 Assessment approaches 

Operating experience and historical inspection data suggest that the degradation growth rate is 
not a constant in a population of tubes within a steam generator or across a fleet of SG. 
Similarly, sizing error associated with an NDE probe varies randomly from flaw to flaw, and 
its actual magnitude is not known. To account for these uncertainties, a ERR and aG(t) are 
modeled as random variables with appropriate probability distribution. It means that the flaw 
repair limit, app, is also a random variable with a distribution that depends on those in the 
right hand side of Eq.(1). Thus, a probabilistic criterion is needed to define acceptance 
standard. One such criterion is that the OA is equivalent to demonstrating that the probability 
of meeting the performance criteria is at least 95% at 50% confidence [2]. 

2.2.1 Approach 1 

Since full uncertainty analysis using detailed Monte Carlo simulations including different 
random variables is not always practical, the industry has developed simplified approaches 
based on bounds (or percentiles) in place of full distribution of random variables. For 
example, the use of 95% percentile of the growth rate distribution as an upper bound rate, 
rup , and 95% percentile of sizing error distribution as the bounding error, aEuRR , is 

recommended in [2]. Using these bounds, the time to next inspection, defined as the time 
during which the worst case flaw will not grow to exceed the MTFS, can be estimated as [4] 

— ay — a aMTFS ERR WS 
t NT, = 

r UP 

(2) 

The projected worst case degraded tube is defined as the degraded tube with 5% percentile of 
the flaw size distribution at 50% confidence [2]. 
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The projected worst case degraded tube is defined as the degraded tube with 5% percentile of 
the flaw size distribution at 50% confidence [2]. 
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In a technical sense, this approach is analogous to random variable (RV) growth rate model of 
degradation [5], which is frequently used in engineering due to its simplicity. The basic idea 
of RV model is that since different tubes in the population experience varying rates of 
degradation (R), it can be treated as a random variable with an appropriate probability 
distribution, such as lognormal distribution recommended in [2]. The flaw growth with time is 
typically modeled as a linear function of time, i.e., 

X (t) = Rt (3) 

The random rate (RV) model implies that although the tube specific growth rates in a group of 
j tubes, ri , r2 ,• • • , ri , come from a distribution, the rate ri for a specific i th tube is a fixed 

number. A specific growth rate ri is obtained by dividing the difference of wall thickness 
measurement between two inspections by the time interval. In other words, each tube locks 
into a fixed rate with which the degradation progresses through out the operating cycle of the 
tube. 

2.2.2 Approach 2 

There is an alternate formulation for predicting the flaw growth distribution, fx(x; t), at the 
end of a time interval (t) as a sum of the two random variables, namely, current flaw size (X) 
distribution, fxo(x), and that of the flaw growth in this time interval, f G(y; t). The sum of two 
random variables is written as the following convolution [3, 6]: 

fx(x;0= f fxocx yv.G(.) OdY 
0 

(4) 

This approach implies a cumulative stochastic (or random) process model of the flaw growth. 
If suppose the interest is in predicting the flaw growth, X(k), after k EFPY (Effective Full 
Power Year), then it is written as a sum of k variables: 

X(k)= Xi + X 2 +  X k (5) 

where X can be modelled as independent and identically distributed random variables. The 

distribution of the total growth will be a convolution) of k distributions. It was suggested to 
use the exponential distribution for modeling flaw growth in a unit time interval, such that the 
growth in k intervals follows a gamma distribution [6]. The time dependent changes in the 
flaw growth can be easily included in this model. 

When the flaw growth per interval is modeled as a gamma distributed with a constant scale 
parameter and time dependent shape parameter, this model (Eq. 5) is analogous to stochastic 
gamma process (GP) [5]. 

2.3 Estimation of the flaw growth rate 
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Suppose a steam generator is inspected at inspection at times ti and t2 and the measured flaw 
sizes are denoted by random variables, V/ and Y2, respectively. Suppose the corresponding 
random sizing errors are denoted as El and E2, and actual flaw sizes as X1 and X2, then the 
following relations hold: 

= Xl E1+ at time ti 

V2 = X 2 E 2+ at time t2 (6) 

Because of random sizing error, the actual flaw size (x) corresponding to a measured value of 
y is not known, and it remains a random variable in a technical sense. Here, the measured 
(RM) and actual growth rates (R) are defined as 

Rm = (Y2 — ) and R= (X2— Xi) (7) 

The measured rate can have negative values because of random nature of the sizing error, 
whereas the actual rate cannot be negative. Since the distribution of measured size is a 
convolution of the distributions of actual flaw size and the NDE error, a precise statistical 
estimation of actual growth rate distribution from the measured data is not a straightforward 
task. The nuclear industry has therefore developed simplified approaches for this purpose, and 
they are discussed below. 

2.3.1 Approximate Method 1 

The first approach is simply to ignore the NDE sizing error and estimate the rates from the 
measured values. In this case, negative rate values are deleted from the sample and then a 
suitable probability distribution is fitted to the data, such as the exponential or gamma 
distribution [3, 6]. 

2.3.2 Approximate Method 2 

A more refined simulation-based approach was proposed in [2], assuming that actual rate and 
the sizing error follow lognormal and normal distributions, respectively. The sizing error has 
zero mean (i.e., unbiased measurements), PE = 0 , and a standard deviation of a-E . From 

Eq.(7), the measured and actual rates are related as 

(E., — E) Rm _ R
t2 — t l

(8) 

Firstly, the measured rates are calculated using a sample of periodic inspection data. 
Assuming that that negative measured rates correspond to very small flaw growth, R is 
ignored such that the lower tail of the measured rate can be approximated by the normal 

distribution with a standard deviation of crE / (t2 — t1) . The following formula is 

recommended to calculate the standard deviation of the sizing error 
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Firstly, the measured rates are calculated using a sample of periodic inspection data. 
Assuming that that negative measured rates correspond to very small flaw growth, R is 
ignored such that the lower tail of the measured rate can be approximated by the normal 
distribution with a standard deviation of 2 12 / ( )E t tσ − . The following formula is 
recommended to calculate the standard deviation of the sizing error  
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crE ''-' 2.33(t2 —t1) 
( rM50 — rM05) 

(9) 

Because the sizing error has zero mean, the mean of actual rate is the same as that of the 
measured rate (PR = p Rm ).Assuming a value of the standard deviation of the actual rate ((TR ), 

samples of R and E are simulated from lognormal and normal distributions, respectively, and 
added appropriately (Eq.8) to come up with a simulated sample of measured rate. The 
cumulative distribution function of the simulated sample is graphically compared with that of 
the actual measured data, and a R is varied till the two sets match fairly closely. The details 

of this method are given in [2]. 

3. Proposed method 

Current methods for the estimation of growth rate are based on heuristic approaches, which 
may provide acceptable approximations in the near term. However, their accuracy for long 
term life-cycle management planning is not known. This is a main motivation for the current 
study. 

This paper presents a cumulative degradation model, Eq.(5), to model flaw growth in the SG 
tubing, which is similar in the spirit to that proposed by in [3, 6]. The assumption of 
cumulative damage model is that the flaw growth in different time intervals is random and 
independent of other intervals. Furthermore, a sound method based on maximum likelihood 
method is presented for incorporating the NDE sizing error in the estimation of the growth 
rate distribution. 

3.1 Gamma process (GP) model 

A special case of cumulative damage model, the stationary gamma process (GP), is proposed 
in which the flaw growth in a unit interval is modelled as a gamma distributed random 
variable. The total flaw size at the end of a t year interval is a gamma distributed with 
probability density function (PDF) [5] 
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Because the sizing error has zero mean, the mean of actual rate is the same as that of the 
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the actual measured data, and Rσ  is varied till the two sets match fairly closely. The details 
of this method are given in [2]. 

3. Proposed method 

Current methods for the estimation of growth rate are based on heuristic approaches, which 
may provide acceptable approximations in the near term. However, their accuracy for long 
term life-cycle management planning is not known. This is a main motivation for the current 
study.  

This paper presents a cumulative degradation model, Eq.(5), to model flaw growth in the SG 
tubing, which is similar in the spirit to that proposed by in [3, 6]. The assumption of 
cumulative damage model is that the flaw growth in different time intervals is random and 
independent of other intervals. Furthermore, a sound method based on maximum likelihood 
method is presented for incorporating the NDE sizing error in the estimation of the growth 
rate distribution.  

3.1 Gamma process (GP) model 

A special case of cumulative damage model, the stationary gamma process (GP), is proposed 
in which the flaw growth in a unit interval is modelled as a gamma distributed random 
variable. The total flaw size at the end of a t year interval is a gamma distributed with 
probability density function (PDF) [5] 
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where α  and β  are shape and scale parameters, respectively. Also, ga( ; , )x a b  is a 
concise notation for the gamma PDF with α  and β  as shape and scale parameters, 
respectively. The mean and the coefficient of variation (COV) of the flaw size ( )X t  is given 
as 

 1E[ ( )] , COV[ ( )]X t t t X t
t t

ναβ µ
α

= = = =  (11) 
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The distribution of flaw growth rate (for t = 1) is also gamma distributed with mean, p =afi , 

and COV v = 1 / Nic7 

3.2 Statistical parameter estimation 

This section presents the maximum likelihood approach to estimate the parameters of the GP 
model (a and JO given periodically obtained sample of flaw size (Y). The likelihood 

function is formulated using the property of independent gamma distributed increments [7]. 

The actual inspection data usually consist of a series of successive measurements of a flaw 
sizes in the SG tube population, denoted as y = {y„ v 2 , • • • , y n . Here, yi = eiF is an i th

measurement of the flaw size is contaminated by the sizing error ei , which is usually 

assumed to be normal distributed with zero mean and a given standard deviation o-E . The 

actual flaw in the i th inspection is denoted as xi . Increments are denoted as: Ayi = yi+1 , 

= , Ae; = , and their samples are denoted as Ay =4 y14 Y2," " 4 yn } 

Ax xi4 x2 , • • 4 xn } and Ae = {Ae, , • • • ,A en . Obviously, Ay = Ax Ae. 

The likelihood function of parameters a and fi in terms of true flaw growth increments, 
Ax , can be written as [7] 

n n I fir At' 1
Lx(a , 13 I Ax) = ga( xi;a t,/3) Aft (A2ci  exp(-4 

/fl) 
i=1 i=1 fir(aAti 

In order to incorporate the effect of sizing error, the likelihood function including the 
measured data is written in a conditional form, and then using the total probability theorem, it 
can be written as 

LY (a,fi I Ay) = 1,, 4 (a,fi I Ax)f (Ay I Ax)dAx 

Note that f(Ay I Ax) is the conditional probability density function of Ay given Ax . 

Using the relation Ay = Ax Ae- and the independence of Ax and Ae, it can be rewritten 

in a form that is amenable to the solution by Monte Carlo integration method (See Appendix 
7.1): 

Ly (a, fi I Ay) = fA. ,fi Ay — Ae)f(Ae)dAe (12) 

The maximum likelihood method is considered as the most versatile and rational approach for 
parameter estimation, and its application has become easier with the availability of advanced 
scientific computation packages. 

The distribution of flaw growth rate (for t = 1) is also gamma distributed with mean, µ αβ= , 
and COV 1/ν α= . 

3.2 Statistical parameter estimation 

This section presents the maximum likelihood approach to estimate the parameters of the GP 
model (α  and β ) given periodically obtained sample of flaw size (Y). The likelihood 
function is formulated using the property of independent gamma distributed increments [7].  

The actual inspection data usually consist of a series of successive measurements of a flaw 
sizes in the SG tube population, denoted as 1 2{ , , , }ny y y=y  . Here, i i iy x e= +  is an ith

ie
 

measurement of the flaw size is contaminated by the sizing error , which is usually 
assumed to be normal distributed with zero mean and a given standard deviation Eσ . The 
actual flaw in the ith

ix inspection is denoted as . Increments are denoted as: 1i i iy y y+∆ = − , 

1i i ix x x+∆ = − , 1i i ie e e+∆ = − , and their samples are denoted as 1 2{ , , , }ny y y= ∆ ∆ ∆Δy  , 

1 2{ , , , }nx x x= ∆ ∆ ∆Δx   and 1{ , , }ne e∆ = ∆ ∆e  . Obviously, = +Δy Δx Δe . 

The likelihood function of parameters α  and β  in terms of true flaw growth increments, 
Δx , can be written as [7] 

 
1

1 1

( / )( , | ) ga( ; , ) exp( / )
( )

itn n
i

X i i i
i i i

xL x t x
t

αβα β α β β
β α

∆ −

= =

∆
= ∆ ∆ = −∆

Γ ∆∏ ∏Δx  

In order to incorporate the effect of sizing error, the likelihood function including the 
measured data is written in a conditional form, and then using the total probability theorem, it 
can be written as  

 ( , | ) ( , | ) ( | )Y XL L f dα β α β= ∫ΔXΔy Δx Δy Δx Δx  

Note that ( | )f Δy Δx  is the conditional probability density function of Δy  given Δx . 
Using the relation = +Δy Δx Δe  and the independence of Δx  and Δe , it can be rewritten 
in a form that is amenable to the solution by Monte Carlo integration method (See Appendix 
7.1):  

 ( , | ) ( , | ) ( )Y XL L f dα β α β= −∫ΔEΔy Δy Δe Δe Δe  (12) 

The maximum likelihood method is considered as the most versatile and rational approach for 
parameter estimation, and its application has become easier with the availability of advanced 
scientific computation packages. 
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4. Results 

4.1 Simulation-based analysis 

The impact of sizing error is illustrated using inspection data simulated from a gamma process 
model of flaw growth. Consider an example in which a SG has 10 tubes with one fretting 
wear flaw in each tube. The flaw growth follows a gamma process with mean growth rate of 
p = 2 % tw/EFPY and the COV of v = 0.4 (Gamma process parameters are a = 6.25 and 

fi = 0.32 ). It is assumed that each tube is inspected 4 times at a 2 EFPY interval. In the 

simulation, 10 growth curves are randomly generated and then 4 points, each at 2 EFPY 
interval, are selected from each curve as true flaw sizes. Corresponding to each flaw size, the 
NDE sizing error is simulated from a normal distribution with zero mean and a specified 
value of 6 E, and it is added to true flaw size to come up with a measured flaw size. This 

way, one sample of 40 flaw measurements is simulated in one cycle of the Monte Carlo 
analysis. 

The maximum likelihood method is applied to estimate the gamma process parameters, first 
considering the sizing error and then ignoring it from the likelihood function. From one 
estimated set of parameters, the 95th percentile of flaw growth in a 2 EFPY future interval is 
computed. Suppose it is denoted as ZEST . Since the parameters of the gamma process 

generating the data in simulations are known, the exact 95th percentile of flaw growth in the 
same period can be exactly computed, which is zEx =6 %tw. Thus, he prediction error in one 

simulated sample is defined as e = ( ..zEsT zEx)- In summary, an i th simulated sample provides 

an estimate of the prediction error, e1. Simulations were repeated 200 times, and root mean-
square error (RMSE) of the prediction was evaluated. 

A plot of RMSE of predicted flaw growth as a function of the standard deviation of sizing 
error is shown in Figure 1. It is clear that ignoring sizing error will increase the statistical 
error associated with future flaw growth prediction. For example, when sizing error 6 E= 5 

%tw, the RMSE associated with predicted flaw growth in 2 EFPY can be as high as 8 %tw. 
This prediction error will lead to further errors in estimating future inspection schedule and 
the number of tube plugging. 

4. Results 

4.1 Simulation-based analysis 

The impact of sizing error is illustrated using inspection data simulated from a gamma process 
model of flaw growth. Consider an example in which a SG has 10 tubes with one fretting 
wear flaw in each tube. The flaw growth follows a gamma process with mean growth rate of 

2µ = % tw/EFPY and the COV of 0.4ν =  (Gamma process parameters are 6.25α =  and 
0.32β = ). It is assumed that each tube is inspected 4 times at a 2 EFPY interval. In the 

simulation, 10 growth curves are randomly generated and then 4 points, each at 2 EFPY 
interval, are selected from each curve as true flaw sizes. Corresponding to each flaw size, the 
NDE sizing error is simulated from a normal distribution with zero mean and a specified 
value of Eσ , and it is added to true flaw size to come up with a measured flaw size. This 
way, one sample of 40 flaw measurements is simulated in one cycle of the Monte Carlo 
analysis.  

The maximum likelihood method is applied to estimate the gamma process parameters, first 
considering the sizing error and then ignoring it from the likelihood function. From one 
estimated set of parameters, the 95th

ESTz
 percentile of flaw growth in a 2 EFPY future interval is 

computed. Suppose it is denoted as . Since the parameters of the gamma process 
generating the data in simulations are known, the exact 95th

EXz
 percentile of flaw growth in the 

same period can be exactly computed, which is =6 %tw. Thus, he prediction error in one 
simulated sample is defined as ( )EST EXe z z= − . In summary, an ith simulated sample provides 
an estimate of the prediction error, ei

Eσ

. Simulations were repeated 200 times, and root mean-
square error (RMSE) of the prediction was evaluated.  

A plot of RMSE of predicted flaw growth as a function of the standard deviation of sizing 
error is shown in Figure 1. It is clear that ignoring sizing error will increase the statistical 
error associated with future flaw growth prediction. For example, when sizing error = 5 
%tw, the RMSE associated with predicted flaw growth in 2 EFPY can be as high as 8 %tw. 
This prediction error will lead to further errors in estimating future inspection schedule and 
the number of tube plugging. 
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Figure 1: Root mean-square error (RMSE) associated with flaw growth prediction 

4.2 Practical case study: Wear of SG tubing 

Fretting and wear degradation is caused by mechanical interactions between neighbouring 
tubes, tubes and anti vibration bars and supports. Flow induced vibrations, which can be 
highly variable at a local scale, contributes to fretting and wear of SG tubing. 

This section presents a case study involving the assessment of fretting wear of SG tubes in a 
nuclear station. The periodic inspections of 4 SGs were carried out over a 15 year period, 
which revealed 120 tubes with fretting wear. Several tubes with wear were inspected 2 to 4 
times, which provides good data for growth rata analysis. Details of Inspection data are 
shown in Figure 2 and Table 1. in case of wear, the maximum tolerable flaw size is taken as 
71% tw [3]. 
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Figure 2: SG tubing wear data from a nuclear reactor 
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highly variable at a local scale, contributes to fretting and wear of SG tubing.   

This section presents a case study involving the assessment of fretting wear of SG tubes in a 
nuclear station. The periodic inspections of 4 SGs were carried out over a 15 year period, 
which revealed 120 tubes with fretting wear. Several tubes with wear were inspected 2 to 4 
times, which provides good data for growth rata analysis. Details of Inspection data are 
shown in Figure 2 and Table 1. in case of wear, the maximum tolerable flaw size is taken as 
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Table 1: Detected worst flaws in four steam generators 

SG No. SG1 SG2 SG3 SG4 
Number of tubes with fretting wear 17 29 32 42 
worst-case flaw depth (%tw) 42% 31% 29% 57% 

4.2.1 Prediction of flaw growth 

Table 2: Features of the methods for analyzing NDE sizing error 

Method Model Data Required Method to account for the 
sizing error 

Approximate 
method 1 

Growth rate - gamma 
distribution 

Only the first and the 
last measurements are 
used 

all negative rates are set to 
zero 

Approximate 
method 2 

Growth rate - 
lognormal distribution 

Only the first and the 
last measurements are 
used 

Monte Carlo simulations and 
visual comparison 

Proposed 
method 

Gamma process model All periodic 
measurements are 
used 

Maximum likelihood method 

Table 3: Summary of annual flaw growth distributions obtained from the three methods 

Method Statistics of annual flaw 
growth (%tw/EFPY) 

95th percentile (upper 
bound) of annual flaw 
growth (%tw/EFPY) 

Approximate method 1 
(Gamma distribution) 

mean: 2.32 cov: 0.82 6.05 

Approximate method 2 
(Lognormal distribution) 

mean: 1.75 cov: 1.45 5.72 

Proposed method 
(Gamma process) 

mean: 1.43 cov: 2.10 7.08 
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Figure 3: Comparison of 95th upper bound of predicted flaw growth over time 
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Figure 3: Comparison of 95th upper bound of predicted flaw growth over time  
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Three methods were used to analyse the data obtained from a nuclear station. Features of the 
three methods are compared in Table 2. The statistics of annual flaw growth obtained from 
the three methods as summarized in Table 3, and the upper bound of predicted flaw growth 
(95% percentile) over a time interval (04] is plotted in Figure 3. In the maximum likelihood 
analysis, the standard deviation of sizing error was assumed as o-E =5 %tw. It is the same 

value as that estimated by the lognormal model in Approximate Method-2 [2]. 

It is interesting that in short term (t 2 EFPY), predictions of all the three methods are 
reasonably close. However, in medium term, t 4 EFPY, predictions of the two approximate 
methods can be as high as 30 %tw in comparison to that predicted by the proposed model. 
The reason is that in lolls term, the standard deviation of the flaw growth in gamma process 
model is a function of t, whereas the other two methods use the RV model in which the 
standard deviation is a linear function of time t. 

It is interesting that the results of the first approximate method are quite close to that of the 
second, more refined approximation. It is in spite of the fact that the first method ignores the 
sizing error and negative values of the measured rate from the data analysis. 

4.2.2 Prediction of the time for next inspection 
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Figure 4: Upper bound growth of the worst-case flaw in four steam generators 

Three methods were used to analyse the data obtained from a nuclear station. Features of the 
three methods are compared in Table 2. 

Table 3
The statistics of annual flaw growth obtained from 
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analysis, the standard deviation of sizing error was assumed as Eσ =5 %tw. It is the same 
value as that estimated by the lognormal model in Approximate Method-2 [2].  

It is interesting that in short term (t ≤ 2 EFPY), predictions of all the three methods are 
reasonably close. However, in medium term, t ≥ 4 EFPY, predictions of the two approximate 
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model is a function of 
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It is interesting that the results of the first approximate method are quite close to that of the 
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sizing error and negative values of the measured rate from the data analysis.  
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The time for next inspection is calculated as the time during which an existing worst flaw in a 
SG will grow to reach the specified MTFS of 71 %tw. The approximate methods use the 
following approach to predict the upper bound growth of the worst flaw: 

awsu (0= aws +rupt +aEuRR (13) 

It is should be noted here that the sum of the two 95th percentiles (r and a ERR) is not 
necessarily equal to the true 95th percentile of the sum of the variables (i.e., aws). In this 
sense, Eq.(13) is another approximation associated with the methods currently used by the 
industry. In the proposed gamma process model, the 95th percentile (upper bound) of the 
worst flaw growth is obtained in a correct way by evaluating a convolution equation, as 
shown in Appendix 7.2. 

Using the data for the measured size of worst flaws (denoted as a ws) given in Table 1, the 
growth curves obtained from the three methods are plotted in Figure 4, and predictions for the 
time for next inspection are compared in Figure 5. 
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Figure 5: Predicted time for next inspection 

The inspection interval predicted by the proposed model is almost twice than that predicted 
by the approximate methods. Figure 5 shows that approximate methods are quite conservative 
in nature. The two approximate methods lead to are fairly close predictions, which indicates 
that the extra analysis involved with the second approximate method [2] has a limited payoff 
in terms of improving the accuracy of analysis. 

5. Summary and conclusions 

In this paper, a probabilistic approach is presented for the prediction of future flaw growth in 
support of operational assessment and life cycle management of steam generators. 

( )U U
WS WS UP ERRa t a r t a= + +

The time for next inspection is calculated as the time during which an existing worst flaw in a 
SG will grow to reach the specified MTFS of 71 %tw. The approximate methods use the 
following approach to predict the upper bound growth of the worst flaw: 
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sense, Eq.(13) is another approximation associated with the methods currently used by the 
industry. In the proposed gamma process model, the 95th percentile (upper bound) of the 
worst flaw growth is obtained in a correct way by evaluating a convolution equation, as 
shown in Appendix 7.2.  
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5. Summary and conclusions 

The inspection interval predicted by the proposed model is almost twice than that predicted 
by the approximate methods. Figure 5 shows that approximate methods are quite conservative 
in nature. The two approximate methods lead to are fairly close predictions, which indicates 
that the extra analysis involved with the second approximate method [2] has a limited payoff 
in terms of improving the accuracy of analysis.  

In this paper, a probabilistic approach is presented for the prediction of future flaw growth in 
support of operational assessment and life cycle management of steam generators.  
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The paper first discusses two existing approximate methods used by the nuclear industry for 
predicting the flaw growth and the time for next inspection. The approximate methods 
account for the NDE sizing error in a heuristic manner. The first method ignores the negative 
rates and evaluates the growth rate based on measured data. The second method 
approximately estimates the standard deviation of the sizing error (6E ) based on heuristic 

assumptions. 

The paper presents a gamma process model for the flaw growth in SG tubing, which is similar 
in spirit of the approach suggested in the fitness for service guidelines [3] and it generalizes 
the formulation of Carmacho and Pagan [6]. The proposed method accounts for the NDE 
sizing error in a probabilistically consistent manner in the maximum likelihood formulation. 

A simulation-based study shows that a relatively small sizing error can lead to large error in 
the flaw growth prediction. For example, when sizing error o-E = 5 %tw, the RMSE 

associated with predicted flaw growth in 2 EFPY can be as high as 8 %tw. Such an error can 
increase the cost of tube plugging or shorten the inspection interval. 

A detailed case study is presented based on the periodic inspection data for fretting wear in 
SG tubing collected from a Canadian nuclear station. The case study shows that in short term 
(t 2 EFPY), flaw growth predictions by all the three methods are reasonably close (Figure 
2). In medium term however, t 4 EFPY, the predictions of the two approximate methods can 
be as high as 30 %tw in comparison to that predicted by the proposed method. A comparison 
of the predictions of the time for next inspection further highlights the impact of NDE sizing 
error. The inspection interval predicted by the proposed model is almost twice than that 
predicted by the approximate methods (Figure 5). 

It is interesting that the results of the first approximate method [6] are quite close to that of 
the second, more refined approximation [2] in this case study. It is in spite of the fact that the 
first method ignores the sizing error and negative rate data from the analysis. Within the 
context of the data used in the case study, the results indicate that the extra analysis involved 
with the second approximate method [6] has a limited payoff in terms of improving the 
accuracy of the analysis. 

It is concluded that approximate methods used by the industry to model inspection 
uncertainties are conservative, which can impact adversely on the effectiveness of life cycle 
management plans. The prediction accuracy can be significantly improved by the proposed 
gamma process model including the NDE sizing error. 

6. References 

[1] CSA N285.4, "Periodic inspection of CANDU nuclear power plant component", 
Mississauga, Ontario, Canada, 2009. 

[2] EPRI, "Steam generator integrity assessment guidelines: revision 2". TR-1012987, 
Palo Alto, CA, 2006. 

The paper first discusses two existing approximate methods used by the nuclear industry for 
predicting the flaw growth and the time for next inspection. The approximate methods 
account for the NDE sizing error in a heuristic manner. The first method ignores the negative 
rates and evaluates the growth rate based on measured data. The second method 
approximately estimates the standard deviation of the sizing error ( Eσ ) based on heuristic 
assumptions.  

The paper presents a gamma process model for the flaw growth in SG tubing, which is similar 
in spirit of the approach suggested in the fitness for service guidelines [3] and it generalizes 
the formulation of Carmacho and Pagan [6]. The proposed method accounts for the NDE 
sizing error in a probabilistically consistent manner in the maximum likelihood formulation.  

A simulation-based study shows that a relatively small sizing error can lead to large error in 
the flaw growth prediction. For example, when sizing error Eσ = 5 %tw, the RMSE 
associated with predicted flaw growth in 2 EFPY can be as high as 8 %tw. Such an error can 
increase the cost of tube plugging or shorten the inspection interval. 

A detailed case study is presented based on the periodic inspection data for fretting wear in 
SG tubing collected from a Canadian nuclear station. The case study shows that in short term 
(t ≤ 2 EFPY), flaw growth predictions by all the three methods are reasonably close (Figure 
2). In medium term however, t ≥ 4 EFPY, the predictions of the two approximate methods can 
be as high as 30 %tw in comparison to that predicted by the proposed method. A comparison 
of the predictions of the time for next inspection further highlights the impact of NDE sizing 
error. The inspection interval predicted by the proposed model is almost twice than that 
predicted by the approximate methods (Figure 5).  

It is interesting that the results of the first approximate method [6] are quite close to that of 
the second, more refined approximation [2] in this case study. It is in spite of the fact that the 
first method ignores the sizing error and negative rate data from the analysis. Within the 
context of the data used in the case study, the results indicate that the extra analysis involved 
with the second approximate method [6] has a limited payoff in terms of improving the 
accuracy of the analysis.  
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7. Appendices 

7.1 Evaluation of the likelihood equation 

Likelihood function (12) is a high dimensional integration because Aei are dependent. In fact, 

the correlation coefficient between Aei and Aei_i is 

cov(Ae„ Aei_i ) = cov(ei+i — et, ei — ei_1) 1 
Pi = 

= 

CI,. CIA,.i, 2ae2 
2.---, ---

Eq (12) can then be approximated by the following summation: 
1 N
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increments. 

Using the relation between Aei and et , equation (13) can be calculated as follows: 
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distribution with zero mean and standard deviation a e , 
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where ( ) ( ) ( ) ( )
1 2{ , , , }j j j j

ne e e= ∆ ∆ ∆Δe  , 1, 2, ,j N=  , are N set of samples of measurement error 
increments. 

Using the relation between ie∆  and ie , equation (13) can be calculated as follows: 
1. Generate N sets of inspection error samples ( ) ( ) ( )
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distribution with zero mean and standard deviation eσ , 
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2. Samples of measurement error increments are calculated using kV) = ; 

3. Substitute A4') in equation (13) to obtain an approximate value Ly(a,fl I Ay) . 

The above steps are repeated for a number of times to ensure that the number of samples Nis 
sufficiently large to achieve the required accuracy for the likelihood function. 

7.2 Prediction of future flaw growth in proposed model 

Assume that the size (or depth) of the worst flaw existing in a steam generator is measured as 
yW in the latest inspection at time t. In order to calculate the time for next inspection, the 
future growth of this flaw needs to be predicted. The true size of this measured flaw at current 
time time t is X(t) = yw ET where E is the normal distributed sizing error. The true flaw 

size, X(t), is now a random quantity, because the actual sizing error added to this 
measurement is not known. The flaw growth after a time interval, At , is given by: 

(t + At) = yw E— Xi( t)A 

where X(At) is the flaw growth during time interval At . 

Define a new ransom variable, P = yw ET where P is normal distributed with mean ym, 

and standard deviation 6 E . Since P and X(At) are independent, the future flaw growth is a 

sum of two random variables, i.e., X„, (t + At) = P X( t4. In case of gamma process model, 

the cumulative distribution of X„, (t + At) is given as 

Fxw(t+At)(x)= f f fx(At)(ofp(v)dudv 
p+x(et)x 

= if ga(u;a t,fl)0(v;y4a e)dudv 
u-Evx 

Here 0(x;3,6) is PDF of normal distribution with mean ' and standard deviation a . The 

PDF of the growth of the worst flaw Xm, (t + At) is given as 

fxw(t+At) (X) = F XF w(t+At)(X) F g 04;a t,i00(x u;y74„0- e )du (14) 

The 95th percentile of this distribution is taken as the predicted flaw growth including the 
sizing error. Note that this value will be different from the algebraic sum of 95th upper bounds 
of the sizing error and growth distribution, as adopted by approximate methods used by the 
industry. 
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The above steps are repeated for a number of times to ensure that the number of samples N is 
sufficiently large to achieve the required accuracy for the likelihood function.  

7.2 Prediction of future flaw growth in proposed model 

Assume that the size (or depth) of the worst flaw existing in a steam generator is measured as 
ywyw in the latest inspection at time t. In order to calculate the time for next inspection, the 
future growth of this flaw needs to be predicted. The true size of this measured flaw at current 
time time t is ( ) wX t y E= − , where E is the normal distributed sizing error. The true flaw 
size, X(t), is now a random quantity, because the actual sizing error added to this 
measurement is not known. The flaw growth after a time interval, t∆ , is given by: 

 ( ) ( )w wX t t y E X t+ ∆ = − + ∆   

where ( )X t∆  is the flaw growth during time interval t∆ .  

Define a new ransom variable, wP y E= − , where P is normal distributed with mean wy  
and standard deviation Eσ . Since P and ( )X t∆  are independent, the future flaw growth is a 
sum of two random variables, i.e., ( ) ( )wX t t P X t+ ∆ = + ∆ . In case of gamma process model, 
the cumulative distribution of ( )wX t t+ ∆  is given as 
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Here ( ; , )xφ µ σ  is PDF of normal distribution with mean ¹¹  and standard deviation σ . The 
PDF of the growth of the worst flaw ( )wX t t+ ∆ is given as 

 ( ) ( )( ) ( ) g a( ; , ) ( ; , )d
w wX t t X t t w ef x F x u t x u y uα β φ σ

∞

+∆ +∆ −∞
′= = ∆ −∫ . (14) 

The 95th percentile of this distribution is taken as the predicted flaw growth including the 
sizing error. Note that this value will be different from the algebraic sum of 95th upper bounds 
of the sizing error and growth distribution, as adopted by approximate methods used by the 
industry. 
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