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Abstract 

A new approximation solution of the point kinetics equation system for a group of precursors 
with temperature feedback is presented. The formulation proposed consists of the expansion 
of neutron density in power of the generation time for prompt neutrons and presents explicit 
dependence in time. The results obtained displayed small deviations in relation to the 
numerical reference solution and systematically better than other analytical methods found in 
the literature, despite the simplicity of its functional form and ease of implementation. 

1. Introduction 

The analytical solution of point kinetics equations with a group of delayed neutrons is useful 
in predicting the variation of neutron density during the operation of a nuclear reactor. Apart 
from neutron density, other variable quantities in time such as the reactor operating 
temperature and the concentration of delayed neutron precursors are essential for the control 
and design of reactor core [1]. 

In order to predict how these quantities will vary in time some methods, numerical [2,3] and 
analytical [5,6,7] have been under development to solve the point kinetics equations also 
considering the effect of the temperature feedback to the adiabatic and Newtonian models. 

The point kinetics equations with a group of precursors considering that the temperature 
feedback is adiabatic are written as follows: 

dn(t) = 
p(t)- 

fi 
n(t)- F A,C(t) 
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A,C(t)- 

1 
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where n(t) is the neutron density, p (t) is the reactivity, /1 is the total fraction of the 

delayed neutrons, 1 is the generation time for prompt neutrons, A, is the decay constant for 
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where ( )n t  is the neutron density, ( )tρ  is the reactivity, β  is the total fraction of the 
delayed neutrons, l  is the generation time for prompt neutrons, λ  is the decay constant for 
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delayed neutron precursors, C(t) is the mean density for delayed neutron precursors, 

a (a > 0) is the reactivity coefficient and Kc is the thermal capacity of the reactor. 

In the present paper a new approximated solution for the point kinetics equation system with 
temperature feedback is presented considering the adiabatic model as in Nahla's paper [7]. 
Those solutions are valid for PWR and are based on the expansion of the neutrons density in 
terms of the generation time of prompt neutrons and presents the advantage of being explicit 
in time and having a simple functional form in comparison with other existing formulations. 

2. A New Solution of the Point Kinetics Equations with Temperature Feedback 

From equations (1) and (2) it is possible to eliminate the explicit dependency of the 
concentration of delayed neutrons and write the following equation for the neutron density: 

[,IPW Ap(t)1 n(t) ,  0 , 
d2n(t) 

P(t)1d dt2 dt dt 

subjected to the initial conditions, 

[ n(0)= no

do (0) =oIL dt 

(5) 

(6) 

In expanding the concentration of neutrons in terms of powers of the generation time for 
prompt neutrons and considering that / >> 12 and / >> al one can write, until the first order: 

and 

n(t)= ni (t) ln2 (t4}, (7) 

d p(t) 
= 

_a 
K cni(t). (8) 

dt 

By replacing equations (7) and (8) in equation (5) one obtains that functions n, (t) and n2 (t) 

are expressed, respectively, as solution for the differential equations below: 
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In expanding the concentration of neutrons in terms of powers of the generation time for 
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The expression for can be obtained from equations (8) and (9) [7], allowing one to write the 
following differential equation: 

dni  =  aKcni — ylp 
(11) 

dp alc(fl—p)' 

which, when integrated with the initial conditions p(0) = po and n(0) = no provides the 

following expression for function n1 (t): 
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Taylor series, by: 
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The approximation expressed by equation (13) is valid for parameters that are typical for 
PWR reactors. By replacing equation (12) in equation (8) one obtains the following 
differential equation: 

dp(t) = yl, (c r — PO ± P)-11 . 
dt 2 L t3-p i 

(14) 

Let us consider the scenario where the core of the nuclear reactor operates near the condition 
in that po P--, /3 . This condition implies, from equation (13), that a z-, /I . Thus, it is possible to 

simplify equation (14), rewriting it as follows: 

dp(t) = 

dt 
(15) 

In integrating equation (15) and imposing the initial condition p (0) = fi one obtains an 

expression for system reactivity with an explicit time dependency: 
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When the core of the nuclear reactor operates in a condition in that po z-, fi it is possible to 

obtain a simple and explicit solution in the time. From equation (16) it is possible to estimate 
the asymptotic behaviour of the reactivity from the expression: 
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pass(o= limp(+) +po aK Acno i 
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By replacing equation (16) in equation (3) one can write an expression for the variation of the 
temperature of reactor core: 

r(t)=To ( a  ± P° l e4 ) 
a

(18) 

From equation (18) it also possible to estimate the asymptotic behaviour of the temperature in 
the reactor core from the expression: 

Tass (t)=Lim. T(t) To ( a --VA). (19) 
a 

To calculate the concentration of neutrons according to the approximation proposed one 
should first calculate function n1 (t) from equation (12): 
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2aKc

Replacing the equations (16) and (20) and their derivates in equation (10) it is possible to 
write the following differential equation for the n2 (t) function: 
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Equation (21) is of the ordinary kind and not homogeneous and can be written thus: 
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being solved using the integrating factor method [8] and providing solutions written by: 
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Therefore, solving equation (21) imposing the initial condition n2 (0) = 0 one can write the 

following expression for the n2 (t) function: 

) , , (a+Po ) e-Al In 1—e 2 + 1 a  
.fit 1 

n2 V)= 
_I 4.01Kccr Po 

(24) 

Finally, by replacing equations (20) and (24) in equation (7) one obtains the expression for 
neutron density n(t): 
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The concentration of neutron precursors C(t) can be calculated from equation (1), to 

produce: 

C(t)= Al  [r nd(tt) [ P(t)i — ig 11 714 , (26) 

where reactivity p (t) is calculated from equation (16) and neutron density n(t) and its 

derivate are obtained from equation (25). 

3. Results 

The results obtained in this paper represent a solution of the point kinetics equations with a 
group of precursors considering the temperature feedback in a transient situation that nears 
the condition pc, z-, fl . 

In all of the simulations the supercritical process in a PWR reactor will be considered, using 
as fuel material 235U and assuming that /I = 0.0065 , 1=0.0001s , A= 0.07741s-1 , 

Kc = 0.05K /MW.s, T o = 300K and a =5 143-5°C-1 . The numerical method of finite 

differences will be employed as the reference. 

Graphs 1 until 4 show, respectively, the behaviour of the variation of the reactivity, of the 
temperature, of neutron density and of neutron precursors, as obtained from the formulations 
proposed in this paper, equations (16), (18), (25) and (26), and the method proposed by Nahla 
(2009) for pc, = 0.95)0 . 
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Finally, by replacing equations (20) and (24) in equation (7) one obtains the expression for 
neutron density ( )n t : 

( ) 2 2
1 2

0

ln 1 1 ,
t t

n t A e A e
λ λσ

ρ
− −    = + − +   

     
                                     (25) 

where ( )0
1 4 c

A l
K

σ ρ
α σ
+

=  and 2
2A

l
λσ

= . 

The concentration of neutron precursors ( )C t  can be calculated from equation (1), to 
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where reactivity ( )tρ  is calculated from equation (16) and neutron density ( )n t  and its 
derivate are obtained from equation (25). 

3. Results 

The results obtained in this paper represent a solution of the point kinetics equations with a 
group of precursors considering the temperature feedback in a transient situation that nears 
the condition 0ρ β≈ . 

In all of the simulations the supercritical process in a PWR reactor will be considered, using 
as fuel material 235 0.0065β =U and assuming that , 0.0001l s= , 10.07741sλ −= , 

0.05 / .cK K MW s= , 0 300T K=  and 5 0 15 10 Cα − −= × . The numerical method of finite 
differences will be employed as the reference. 

Graphs 1 until 4 show, respectively,  the behaviour of the variation of the reactivity, of the 
temperature, of neutron density and of neutron precursors, as obtained from the formulations 
proposed in this paper, equations (16), (18), (25) and (26), and the method proposed by Nahla 
(2009) for 0 0.95ρ β= .  
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Figure 1 The reactivity calculated by equation (16). 
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Figure 2 The temperature calculated by equation (18). 
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Figure 3 The neutron density calculated by equation (25). 
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Figure 4 The precursors neutron density calculated by equation (26). 
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4. Conclusions 

An analytical approximation was developed in this paper in the attempt to predict the neutron 
density n(t) during a condition in that pc, z-, fi , considering a group of delayed neutron 

precursors and temperature feedback. The formulation proposed consists of the solution of the 
point kinetics equations for a group of precursors from the expansion of neutron density in 
power of parameter 1. Although there are different solutions for point kinetics equations with 
temperature feedback, one of the advantages of the method proposed is to provide analytical 
approximations with an explicit time dependency for important quantities as regards the 
design and operation of the nuclear reactor such as neutron density, concentration of delayed 
neutron precursors and temperature of the reactor core. One of the applications of the 
expressions presented consists of the prediction of transients near to pc, z-: fi considering 

temperature feedback and the adiabatic model. The results obtained present small deviations 
in relation to the numerical reference solution. 
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