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Abstract 

We present recent progresses done regarding the development of a Monte Carlo module in the 
lattice code DRAGON. We propose using probability table cross sections in a Monte Carlo 
algorithm, as first introduced by D.E. Cullen at LLNL in the Monte Carlo transport code TART. 
In our case, the CALENDF formalism has been chosen for computing the probability tables, in 
addition with optimized energy meshes comprising only 295 or 361 groups. An evaluation of the 
coolant void reactivity (CVR) of a legacy CANDU-6 2D cell is discussed. Numerical results 
have been confronted to those of continuous-energy Monte Carlo and Collision Probability 
methods, establishing very good level of accuracy of the Probability Table Monte Carlo method. 

1. Introduction 

Given the constant growth in term of computational power of modern computers, the Monte 
Carlo method is becoming a feasible alternative for production calculations. In particular, 
traditionally lattice calculation of group constants can possibly be done with a Monte Carlo 
method, provided that its calculation time remains acceptable compared to legacy CP/MoC cell 
codes. 

A preliminary work done by B. Arsenault [1,2] has set the basis of a Monte Carlo module in the 
lattice code DRAGON [3]. The primary objective was to implement 2D/3D Monte Carlo 
capabilities within DRAGON, in such a way that a considerable part of the existing modules can 
be adequately reused. Such a tool can then be applied to the evaluation of macroscopic cross-
sections of any type of reactors, in addition to the 2D/3D deterministic methods such as Pij or 
MoC. In its first implementation, the Monte Carlo code can handle only macroscopic cross-
sections, coming from a preliminary deterministic group constants generation. Our first work 
was to enable the use of microscopic, multi-group cross-sections as input library. An innovative 
aspect of the Monte Carlo module was the new capability to use probability table cross-sections, 
already available in DRAGON for advanced self-shielding models. The purpose is twofold: at a 
first step, Monte Carlo calculations based on probability table cross-sections are much faster 
than continuous-energy ones. Second, we can reuse the library processing done in the LIB: 
module of DRAGON, in charge of the generation of the internal library of cross-sections and of 
the probability tables cross-sections. 

Motivations for developing such a tool are various. We can by now propose a Monte Carlo 
alternative to classical deterministic schemes with the same geometrical inputs and library 
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databases. Such a redundancy can be very useful for assessing the performance of the code. For 
instance, the performance of self-shielding methods can be directly evaluated. 

This paper is divided in three parts. First, we briefly introduce the probability table method, 
useful for representing resonant cross-sections. Then, a description of the Monte Carlo module 
of DRAGON is given. Finally, a comparative study of a regular CANDU-6 cell is detailed, using 
the continuous-energy Monte Carlo reactor physics code SERPENT [4], the DRAGON Collision 
Probability method with the NXT: tracking operator, and our new probability table Monte Carlo 
module. 

2. Probability table cross sections 

2.1 Historical overview 

Levitt [5] and Cullen [6] in the USA, and independently Nikolaev [7] in Russia have proposed 
the probability table representation of cross sections in order to improve the accuracy of neutron 
transport calculations. In this formalism, the cross-sections are replaced by their probability 
densities, which are then discretized in quadrature sets called probability tables. For a given 
energy range, a set of discrete values of cross-sections is derived, each of them associated with a 
weight. Different varieties of probability tables for cross sections have been so far introduced, 
depending on the way they are computed. In continuous-energy Monte Carlo codes, probability 
table (PT) cross sections generated by the PURR module of NJOY [8] are intensively used in the 
unresolved range. It is also possible to derive probability tables for cross-sections in the whole 
energy spectrum. PT cross sections can be then used to perform transport calculation by either 
Monte Carlo or deterministic methods. For instance, the LLNL code TART [9] runs Monte Carlo 
neutron transport calculations with PT cross-sections in the whole energy range. It is important 
to clarify a point of terminology here: any transport equation in which cross-sections are 
replaced by probability densities leads to the sub-group or multiband method. A traditional field 
of application of the subgroup method is for self-shielding correction of resonant cross-sections, 
mandatory when multigroup cross-sections are employed [10]. When a multigroup library is 
generated by NJOY, a flux weighting of the cross-sections is carried using a flux typical of the 
reactor spectrum (e.g. Maxwellian, 1/E, fission). However, this approach fails for resonant 
isotopes. Generally, a two-step scheme is employed at the cell-level calculation: a self-shielding 
stage is first realized, leading to effective cross-sections. These effective cross-sections are then 
used in the main flux calculation. 

The use of probability tables in the whole spectrum can be seen as an extension of the 
multigroup approximation. In the particular case of the Monte Carlo transport method, the switch 
of a multigroup algorithm over a sub-group one is quite straightforward. In a resonant group, the 
discrete value of the cross-section will be sampled directly among the base points of the 
probability table. The self-shielding effect is directly taken into account, in such a way that 
preliminary calculations of effective cross-sections are no more required. For a non-resonant 
group, the unique probability table base point will merely coincide with the multigroup cross-
section, with an associated weight set to one. 
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2.2 Mathematical definition 

The mathematical definition of probability table differs in the literature. Levitt defines the 
probability tables as quadrature sets where the point bases are set a priori. In their relative works, 
Nikolaev and Cullen define a quadrature set where point bases and weights are simultaneously 
computed. The CALENDF method [10] is an outgrowth of this last formalism, and let to the 
definition of mathematical, moment-based probability tables. In this case, cross-sections are 
represented using probability densities, which are then discretized in quadrature called 
probability tables. Moment-based probability tables are commonly used in different self-
shielding methods, for instance in the APOLLO2 lattice code [11], the ECCO fast reactor lattice 
code [12], or in the DRAGON lattice code for different subgroup methods detailed in Refs. [9], 
[13] and [14]. We retained the CALENDF formalism for its mathematical consistency: weights 
are positives, and base points are included in the support [min(a(u)),max(a(u))] . 

It is also possible to compute correlated probability tables with this formalism. Indeed, 
probability tables suffer from an approximation that could be compared to the statistical 
hypothesis made in self-shielding models. As a result, they are best suited for the upper part of 
the resonant domain, where correlated effects vanish. A detailed overview of the method for 
computing mathematical probability tables can be found in Refs. [11] and [13]. 

The direct use of probability table cross-sections in the whole energy range require to take into 
account two different correlations. In the lower part of the resolved domain, the slowing-down 
kernel is acting over a range that is not long compared to the average neutron lethargy, and 
correlations can occur between different energy groups. A simple technique to overcome 
slowing-down correlated effects consists in refining the energy mesh in the resolved energy 
range. This has been done in Refs. [14] and [15], where the SHEM 281 group structure has been 
extended to 295 and 361 groups. Also, correlations occur in case of overlapping resonances for 
two different isotopes or for the same isotope present at different temperatures in the system. 
This phenomenon is known as mutual self-shielding and can be added up by defining correlated 
weights between two isotopes, leading to the definition of 2D probability tables table cross-
sections. A probability density 11(6) can be defined from the microscopic total cross section 
o(u) as depicted in Fig. 1. 

 

2.2 Mathematical definition 

The mathematical definition of probability table differs in the literature. Levitt defines the 
probability tables as quadrature sets where the point bases are set a priori. In their relative works, 
Nikolaev and Cullen define a quadrature set where point bases and weights are simultaneously 
computed. The CALENDF method [10] is an outgrowth of this last formalism, and let to the 
definition of mathematical, moment-based probability tables. In this case, cross-sections are 
represented using probability densities, which are then discretized in quadrature called 
probability tables. Moment-based probability tables are commonly used in different self-
shielding methods, for instance in the APOLLO2 lattice code [11], the ECCO fast reactor lattice 
code [12], or in the DRAGON lattice code for different subgroup methods detailed in Refs. [9], 
[13] and [14]. We retained the CALENDF formalism for its mathematical consistency: weights 
are positives, and base points are included in the support

 

min(σ(u)),max(σ(u))[ ]. 

It is also possible to compute correlated probability tables with this formalism. Indeed, 
probability tables suffer from an approximation that could be compared to the statistical 
hypothesis made in self-shielding models. As a result, they are best suited for the upper part of 
the resonant domain, where correlated effects vanish. A detailed overview of the method for 
computing mathematical probability tables can be found in Refs. [11] and [13]. 

The direct use of probability table cross-sections in the whole energy range require to take into 
account two different correlations. In the lower part of the resolved domain, the slowing-down 
kernel is acting over a range that is not long compared to the average neutron lethargy, and 
correlations can occur between different energy groups. A simple technique to overcome 
slowing-down correlated effects consists in refining the energy mesh in the resolved energy 
range. This has been done in Refs. [14] and [15], where the SHEM 281 group structure has been 
extended to 295 and 361 groups. Also, correlations occur in case of overlapping resonances for 
two different isotopes or for the same isotope present at different temperatures in the system. 
This phenomenon is known as mutual self-shielding and can be added up by defining correlated 
weights between two isotopes, leading to the definition of 2D probability tables table cross-
sections. A probability density 

 

Π(σ) can be defined from the microscopic total cross section 

 

σ(u)  as depicted in Fig. 1.  
 

31st Annual Conference of the Canadian Nuclear Society 
34th CNS/CNA Student Conference

May 24 - 27, 2010 
Hilton Montreal Bonaventure, Montreal, Quebec



31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010 
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec 

M
ic

ro
sc

op
ic

 to
ta

l c
ro

ss
 s

ec
tio

n 
(b

ar
n)

 12.5 

10.0 - 

7.5 - 

5.0 - 

2.5 - 

0.2 0.4 0.6 

Energy (eV) 
0.8 1 0 2 C \I 

0 0 
d 0 0 

Probability density 

Figure 1: cross-section density probability 
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probability of isotope a to have its microscopic total cross-section between o' and o' + dam' 
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3. Monte Carlo random walk with probability tables in the DRAGON lattice code 

A Monte Carlo algorithm using the Woodcock delta-tracking method [1] was already available 
in the DRAGON lattice code, restricted to multigroup cross-sections. Modifications have been 
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given below. 

1. Set the properties of the source neutron: 
• Spatial co-ordinates. 
• Index of the fissile isotope i producing the neutron. 

2. Sampling the energy group in z(E). 
3. Sampling the initial direction. 
4. Sampling of the subgroup index in the probability table: 

• In case of 1D probability table: sampling for each isotope i the microscopic total 
cross-section = cr';,k with a probability Wk. Note that all cross-sections for 

partial reactions come along, with a given value of (rip = 

• In case of correlations between 2 isotopes a and b: sampling for each isotope the 
coab

microscopic total cross-section = c 1 with a probability of b generally 
col

set as the fissile isotope producing the neutron. Correlated isotopes are 

probability of isotope a to have its microscopic total cross-section between 

 

σa  and 

 

σa + dσa  
when isotope b have its microscopic cross-section between 

 

σb  and 

 

σb + dσb . Using the same 
property as before, any Riemann integral in lethargy with a 

 

σa  and 

 

σb  integrand can be replaced 
by an equivalent Lebesgue integral: 

 

 

1
∆ug

du
ug−1

ug

∫ f σa (u),σb (u)[ ]= dσa

0

max(σ a )

∫ dσb

0

max(σ b )

∫ Π(σa,σb ) f (σa ,σb )  (4) 

The probability density is then replaced by a sum of Dirac distributions: 

 

 

Π(σa,σb ) = ω k,l
a,bδ(σa −σk

a )
l =1

L

∑
k =1

K

∑ δ(σb −σl
b ) (5) 

Combining Eqs. [4] and [5] leads to the following discretization 

 

 

1
∆ug

du
ug−1

ug

∫ f σa (u),σb (u)[ ]= ω k,l
a,bδ(σa −σk

a )
l =1

L

∑
k =1

K

∑ δ(σb −σl
b ) f (σk

a ,σl
b ) (6) 

where the correlated weight matrix is normalized in such a way that  

 

 

ωk,l
a,b

k =1

K

∑ = ω l
b  and 

 

ωk,l
a,b

l =1

L

∑ = ωk
a  (7) 

In this case, 2D probability tables between correlated isotopes a and b can be used to sample the 
point base cross-sections of isotope a given those of the isotope b. Mathematically, this property 
can be written as a conditional probability of having the point base cross-section in subgroup k 
for isotope a, given that isotope b has its point base cross-section in subgroup l:    

 

 

P(σa = σk
a |σb = σl

b ) =
ω k,l

a,b

ω l
b  (8) 

Note also that if correlations vanish, 

 

ω k,l
a,b = ω k

aω l
b  and 2D probability tables are simply 1D ones. 

3. Monte Carlo random walk with probability tables in the DRAGON lattice code 

A Monte Carlo algorithm using the Woodcock delta-tracking method [1] was already available 
in the DRAGON lattice code, restricted to multigroup cross-sections. Modifications have been 
undertaken to use probability table cross-sections. A simplified overview of the random walk is 
given below. 

1.  Set the properties of the source neutron: 
• Spatial co-ordinates. 
• Index of the fissile isotope i producing the neutron. 

2. Sampling the energy group in 

 

χi(E). 
3. Sampling the initial direction. 
4. Sampling of the subgroup index in the probability table: 

• In case of 1D probability table: sampling for each isotope i the microscopic total 
cross-section 

 

σt
i = σt,k

i  with a probability 

 

ω k . Note that all cross-sections for 
partial reactions come along, with a given value of 

 

σρ
i = σρ ,k

i . 
• In case of correlations between 2 isotopes a and b: sampling for each isotope the 

microscopic total cross-section 

 

σt
b = σt,l

b  with a probability of 

 

ω k,l
a,b

ω l
b , b generally 

set as the fissile isotope producing the neutron. Correlated isotopes are 

31st Annual Conference of the Canadian Nuclear Society 
34th CNS/CNA Student Conference

May 24 - 27, 2010 
Hilton Montreal Bonaventure, Montreal, Quebec



31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010 
34th CNSICNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec 

determined during the processing: e.g., they are resonant isotopes in the same 
mixture. 

5. Calculation of total cross-sections in group g for each mixtures containing i isotopes, 

Etas = where Ni is the isotopic density of isotope i. 

6. Determination of the majorant cross-section in total volume E„,4 = max, v(E,,g). 

7. Sampling the free path using the majorant cross-section, 
8. Sampling if the collision is real or virtual: 

• In case of virtual collision, new sampling of the free path with the same direction 
• In case of real collision 

■ Sampling of the collided isotope i in region {r,g} with a probability of 
Ng

t,r,g .

■ Sampling the reaction using 
0; 

• In case of scattering, the secondary group is set using isotropic scattering 
cross-sections, and the history continues. (n,xn) reactions are for the time 
being considered as scattering reactions, the weights of the neutrons are 
then consistently increased. 

• If fission occurs, the index of the isotope is stored and the history is 
terminated. 

• In case of absorption, the history is terminated. 
The Monte Carlo algorithm proposed above is currently implemented as an independent module 
called MC:, in a developing version of the lattice code DRAGON. The flowchart of a Monte 
Carlo calculation in DRAGON is displayed in Fig. 2. 
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4, Study of a CANDU lattice cell 

A typical CANDU6 lattice cell has been retained herc for illustrating the performanec of our 
method. We selected a 211 Cartesian cell with a lattice pitch of 28.56 cm, constitutcd of 37 
cylindrical fucl pin cells with heavy watcr as coolant, surrounded by pressure tutee, helium gap, 
calandria tubcs and finally heavy watcr as moderator. 

Ocometrical inputs arc displayed respectively for DRAGON CP method and Montc Carlo (both 
DRAGON MC and SERPENT) in Figs, 3 and 4. 

Figurc 3: CP input geometry 

Figurc 4: MC input geometry 

4. Study of a CANDU lattice cell 

A typical CANDU6 lattice cell has been retained here for illustrating the performance of our 
method.  We selected a 2D Cartesian cell with a lattice pitch of 28.56 cm, constituted of 37 
cylindrical fuel pin cells with heavy water as coolant, surrounded by pressure tubes, helium gap, 
calandria tubes and finally heavy water as moderator.  

Geometrical inputs are displayed respectively for DRAGON CP method and Monte Carlo (both 
DRAGON MC and SERPENT) in Figs. 3 and 4.  

 

Figure 3: CP input geometry 

 

Figure 4: MC input geometry 
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The study done here is a classical evaluation of the coolant void reactivity (CVR). Two 
fundamental mode calculations are done without leakage, using periodic conditions at the 
boundaries. The first one uses the regular CANDU-6 cell modeling, while in the second one the 
coolant is removed from the pressure tube. The CVR will be then evaluated using 

P CVR = 
1 1 

&fill &voided 
n'eff eff 

Three sets of results will be confronted, using: 
• DRAGON CP: collision probability method. 
• DRAGON MC: Monte Carlo method with probability table cross sections. 
• SERPENT: Monte Carlo method with continuous-energy cross-sections. 

(9) 

As the two simulations are independents, standard deviations coming along Monte Carlo 
lc estimators are propagated using 

( a voided )2 ( a full )2 

(kf.if )4 
± 

(kev ffoided )4 (10) 

For both DRAGON simulations, the input cross-sections library is a JEFF3.1, SHEM-361 groups 
in the Draglib format [16]. For the SERPENT code, a JEFF3.1 input library in the ACE format 
has been chosen. As the options and the version of NJOY99 differed slightly between the 
Draglib and the ACE libraries processing, we expect to get some discrepancies between both 
codes. However, the consistency is ensured between DRAGON CP and MC methods. In this 
case, probability tables are used between 22.5 eV and 1.23 x105 eV for the following resonant 
isotopes: Zr91, U235 and U238. A transport correction to the total and scattering cross-sections, 
computed in DRAGON during the LIB: processing, can also be applied to take into account 
anisotropic scattering in the multigroup cross-sections for DRAGON MC and CP methods. 

4.1 Deterministic lattice calculation options 

Any standard cell calculation in DRAGON implies at least two steps. The first one consists in 
performing a self-shielding correction of the cross-sections, typically with a simplified 
geometrical model. In our case, we have chosen a sub-group method as implemented in the 
module USS: of DRAGON, with exactly the same probability tables that in the Monte Carlo 
module. The retained self-shielding algorithm is detailed in Ref. [14], and is known as the 
Subgroup Projected Method. In our case, we have slightly modified the primary approach of this 
formalism by replacing the Root Mean Square (RMS) computed base points of the scattering and 
fission cross-sections by a pure CALENDF method. Indeed, these CALENDF probability tables 
have been established as mandatory for the Monte Carlo module. We therefore enhance 
consistency of both calculations, enabling us to confront in detail the performance of the self-
shielding stage; or inversely, of the Monte Carlo calculation. No discretization of the moderator 
is performed in the self-shielding stage, and a track density of 50 tracks/cm -1 with an azimuthal 

quadrature order of 12 angles in [0, 2are set in the NXT: tracking operator. Results have been 

established poorly sensitive to these parameters. Regarding the main flux calculation, the same 
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tracking options are used, with this time a six and a ten rings' discretization of the coolant and 
the moderator respectively, and two rings for the fuel cells, as illustrated in Fig. 3. 

4.2 Monte Carlo options 

The options used in both SERPENT and DRAGON MC: module are the same: 500 active cycles 
of 3000 neutrons, with 50 discarded cycles. The lc and reaction rates are given by the virtual 
collision estimator, due to the fact that both code use a delta-scattering rejection technique for 
the tracking. As correlation effects between isotopes are considered negligible in this case, only 
1D probability tables are computed. 

4.3 Numerical results 

4.3.1 CVR of a CANDU-6 2D cell 

The infinite multiplication factor ko is displayed in Tab. 1 for each case (full cell and voided 
cell), associated with the absolute difference between the Pointwise Monte Carlo results: 

= kodragon koserpent in pcm (10-5). 

Table 1: ko for a CANDU-6 cell 
DRAGON (CP) DRAGON (MC) SERPENT 

Case Ico, Sic with Serpent ic ± a Sic with Serpent ic ± a 
Full cell 0.93442 299 pcm 0.93579 +1- 30 pcm 437 pcm 0.93142 +1- 30 pcm 

Voided cell 0.95480 236 pcm 0.95513 +1- 30 pcm 269 pcm 0.95244 +1- 30 pcm 

CVR are also computed in Tab. 2. 

Table 2: pcm for a CANDU-6 cell 

SERPENT PCYR 2368 +1- 5 pcm 

PDRAGON(MC) CYR 2163 +1- 5 pcm 

PDRAGON(CP) CYR 2285 pcm 

We observe that probability table Monte Carlo Ic and pcm are consistent with those obtained 
by the legacy collision probability method and to the punctual Monte Carlo code SERPENT. 
Note also that the difference between CP and MC methods in DRAGON is in general below 
100 pcm for both Ic and pcm. 

4.3.2 Reactions rates and spectrum 

In this section, we compare reaction rates generated with the MC: module of DRAGON toward 
CP and SERPENT ones on the CANDU-6 cell with coolant. A complete homogenization is 
carried on the whole geometry, with an energy condensation to four groups tgog-2 ,g3 ,g4 } defined 
in Tab. 3. 
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Table 3: energy range for group condensation 

Group Energy range (eV) 
1 ] 5.10E6 15E6 [ 
2 ] 5.10E3 5.10E6 [ 
3 ] 0.625 5.10E3 [ 
4 ] 5E-4 0.625 [ 

Table 4: relative difference on reaction rates 

Reaction type Relative difference with DRAGON-CP 
(%) 

Relative difference 
with SERPENT (%) 

Fission gl 0.931 3.931 
Fission g2 2.078 1.724 
Fission g3 -0.471 -0.340 
Fission g4 0.112 0.577 
Absorption g1 0.337 -9.74 
Absorption g2 0.071 -0.628 
Absorption g3 1.662 1.892 
Absorption g4 0.131 0.393 
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Figure 4: integrated flux for CP and MC method in DRAGON in resonant groups 

The relative differences between both DRAGON and SERPENT reaction rates are generally 
below a few percent. We also note that the integrated flux spectrum is equivalent for MC and 
CP methods on a CANDU-6 cell. 
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5. Conclusion 

We have developed an independent Monte Carlo method in the lattice code DRAGON, available 
in a module named MC:. This module has been recently rewritten in a FORTRAN 2003 
standard, and should be released within the DRAGON version 5. Validation using 2D PWR and 
CANDU pin cells has established good characteristics of this new solver. Further work will be 
undertaken to check consistency of assembly-level calculations. Validation against selected 
criticality-safety benchmarks, ACR, Pressurized Water Reactor and fast breeder reactor cells will 
be undertaken. We are currently implementing legacy methods permitting the treatment of 
anisotropic scattering reactions in Monte Carlo multigroup calculation, such as the Discrete 
Angle Technique. Validation of these models will terminate the Ph.D. work. At a longer time 
scale, the introduction of a leakage model in the Monte Carlo method and the coupling of 
module MC: with the depletion solver EVO: of DRAGON are required steps before considering 
pure Monte Carlo lattice calculations in DRAGONS. 
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