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Abstract 

An innovative optimization technique based on the use of "genetic algorithms" is used to analyze ther-
modynamic power cycles proposed for running future Supercritical Water Cooled Reactors. The front 
of Pareto generated by the proposed methodology shows that it is still possible to increase both the 
thermal efficiency and the mechanical power of proposed systems. In some cases, Pareto's landscapes 
show particular behaviors suggesting that the optimization can be achieved by modifying a limited 
number of decision variables. However, work is still required to implement simulations that are more 
realistic, i.e., including actual turbine design and operation conditions. 

1. Introduction 

The world energy demand is continuously rising due to the increase of both world population and stan-
dard quality of life. According to the International Agency of Energy, the world primary energy demand 
is expected to augment by up to 45% by 2030 [1]. It is obvious that present observed trends in energy 
supply and consumption do not satisfy environmental sustainability. Thus, to maintain an acceptable 
economy growth by ensuring appropriate social standards, new technologies of energy conversion must 
urgently be developed. 

Within this framework, a Generation IV International Forum (GIF) was established by the participation 
of 10 countries to collaborate for developing nuclear power reactor that will replace the present tech-
nology by 2030. The principal characteristics of this new generation of nuclear reactors, among others 
are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. In order 
to meet these requirements, six nuclear power reactor concepts were selected by GIF members' [2]. 
Among these technologies, Canada has oriented its efforts towards the design of a Supercritical Water 
Reactor (SCWR). This system will use water at supercritical conditions as the principal coolant, run-
ning at about 625°C and 25 MPa [3]. Thereby, the thermal efficiency of this kind of power plant will 
largely compete with actual supercritical steam power boilers. In addition, the high coolant temperature 
will enable not only the production of electricity, but also other energy applications (i.e., hydrogen pro-
duction, sea water desalinisation, petroleum extraction, etc.) to be better achieved. 

From a thermodynamic cycle viewpoint, the use of a supercritical fluid allows heat transfer without 
phase change to be obtained. Therefore, risks associated to the possibility of triggering critical heat flux 
conditions, in principle, are largely reduced or eliminated. Further, the use of steam generators and 
steam separators can be completely avoided in SCWR. In addition, it is also possible to use direct ther-
modynamic cycles where the supercritical fluid expands right away in the turbine without the necessity 
of using intermediate steam generators [4]. To this end, there are still great amount of work to be car-
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ried out to establish the most reliable and optimal cycle topology for this type of applications. Several 
steam-cycle arrangements used in existing thermal power plants have been extensively discussed 
among others by Naidin et al. [5]. In particular, the authors present a comparison of different thermo-
dynamic cycles that could be appropriate to run Supercritical Water Nuclear Power Plants (SCWNPP). 
It must be pointed out, however, that none of the proposed cycles have been optimized yet. It is obvious 
that from an engineering viewpoint this constitutes a key issue. Thus, the present work is intended to 
fulfill this gap by including the optimization of different SCWNPP cycles by using genetic algorithms. 
To perform these calculations, models written in Matlab and an in house optimiser developed around 
evolutionary algorithms are applied [6-8]. 

2. Simulation and optimization strategy 

The optimization of power plants constitutes multi-objective optimization problem where several ob-
jective functions must be satisfied simultaneously [7-9]. In most cases, the objectives conflict one with 
each other, which makes them unlikely to be satisfied by a single choice of controlling variables. 
Therefore, to achieve an optimal design, some trade-offs between objectives must be determined. Thus, 
a general formulation of a multi-objective optimization problem having n objective functions and m 
decision variables can be summarized (e.g., for a minimization case) as follows: 

Minimize f i (X) i =1,2,...,n 

Subjected to the constraints: (1) 
g j(X) 17 0 j = 1,2,...,p 

Where X = (x1  x2 ,. , x „) is a vector, while g j(X) is a component of vector having p constraints. In 

general, there is no a single combination of decision variables xn , which is able to simultaneously mini-

mize all components of the vector f i(X). Therefore, the optimization will be represented by a set of 

trade-off solutions. To determine if a solution is in fact one of the best possible trade-offs, the "Pareto 
optimality" concept is used [10]. It permits a hierarchy among all solutions of a multi-objective optimi-
zation problem to be established. Thus, best solutions of the set are called "Pareto solutions" and they 
can be determined using multi-objective evolutionary algorithms [11]. To perform the present work, an 
efficient and robust evolutionary algorithm called "BEST" [9] is used. This methodology is able to 
tackle quite difficult multi-objective optimization problems without consuming awesome computa-
tional time. In fact we have developed the algorithm for treating complex, large-scale energy systems, 
where traditional methods are difficult to implement or are not able to work at all [12]. 

Unlike classical evolutionary algorithms that promote non-dominated solutions at each generation, the 
present approach consists of emphasizing dominated and non-dominated ones to drive the searching 
process towards the boundaries of the feasible region. To fulfill this requirement, a "Corridor Header 
Evolution Tracking" strategy is successfully implemented and used to treat power systems [7,9]. Solu-
tions inside these corridors become parents for reproducing offspring in the next generation of a genetic 
algorithm [12,13]. Thus, an evolution process is applied to captured individuals that then undergo both 
crossover and mutation operations. The structure of the optimization algorithm is shown in Figure 1. In 
order to increase spreading of individuals and thus to fix more quickly the boundary of the feasible re-
gion, the probability of mutations is initially quite high (70% to 80%). Moreover, there is no special 
mechanism for the maintenance of the diversity because the corridor strategy implicitly fulfills this task 
[8]. In addition, the exploration of a promising area (i.e., contour of the feasible region) is achieved by 
using a crossover operator whose probability increases adaptively as mutations decrease. 

ried out to establish the most reliable and optimal cycle topology for this type of applications.  Several 
steam-cycle arrangements used in existing thermal power plants have been extensively discussed 
among others by Naidin et al. [5]. In particular, the authors present a comparison of different thermo-
dynamic cycles that could be appropriate to run Supercritical Water Nuclear Power Plants (SCWNPP). 
It must be pointed out, however, that none of the proposed cycles have been optimized yet. It is obvious 
that from an engineering viewpoint this constitutes a key issue. Thus, the present work is intended to 
fulfill this gap by including the optimization of different SCWNPP cycles by using genetic algorithms. 
To perform these calculations, models written in Matlab and an in house optimiser developed around 
evolutionary algorithms are applied [6-8].     

2. Simulation and optimization strategy 

The optimization of power plants constitutes multi-objective optimization problem where several ob-
jective functions must be satisfied simultaneously [7-9]. In most cases, the objectives conflict one with 
each other, which makes them unlikely to be satisfied by a single choice of controlling variables. 
Therefore, to achieve an optimal design, some trade-offs between objectives must be determined. Thus, 
a general formulation of a multi-objective optimization problem having n  objective functions and m  
decision variables can be summarized (e.g., for a minimization case) as follows: 
 

Minimize  ( ) niXf i ,...,2,1=  

                                     Subjected to the constraints:                                  (1) 

                                                          ( ) pjXg j ,...,2,10 =≥                                      

Where ( )nxxxX ,...,2,1=  is a vector, while ( )Xg j  is a component of vector having p constraints. In 

general, there is no a single combination of decision variablesnx , which is able to simultaneously mini-

mize all components of the vector( )Xf i . Therefore, the optimization will be represented by a set of 

trade-off solutions. To determine if a solution is in fact one of the best possible trade-offs, the “Pareto 
optimality” concept is used [10]. It permits a hierarchy among all solutions of a multi-objective optimi-
zation problem to be established. Thus, best solutions of the set are called “Pareto solutions” and they 
can be determined using multi-objective evolutionary algorithms [11]. To perform the present work, an 
efficient and robust evolutionary algorithm called “BEST” [9] is used. This methodology is able to 
tackle quite difficult multi-objective optimization problems without consuming awesome computa-
tional time. In fact we have developed the algorithm for treating complex, large-scale energy systems, 
where traditional methods are difficult to implement or are not able to work at all [12].  

Unlike classical evolutionary algorithms that promote non-dominated solutions at each generation, the 
present approach consists of emphasizing dominated and non-dominated ones to drive the searching 
process towards the boundaries of the feasible region. To fulfill this requirement, a “Corridor Header 
Evolution Tracking” strategy is successfully implemented and used to treat power systems [7,9]. Solu-
tions inside these corridors become parents for reproducing offspring in the next generation of a genetic 
algorithm [12,13]. Thus, an evolution process is applied to captured individuals that then undergo both 
crossover and mutation operations. The structure of the optimization algorithm is shown in Figure 1. In 
order to increase spreading of individuals and thus to fix more quickly the boundary of the feasible re-
gion, the probability of mutations is initially quite high (70% to 80%). Moreover, there is no special 
mechanism for the maintenance of the diversity because the corridor strategy implicitly fulfills this task 
[8]. In addition, the exploration of a promising area (i.e., contour of the feasible region) is achieved by 
using a crossover operator whose probability increases adaptively as mutations decrease.  

31st Annual Conference of the Canadian Nuclear Society 
34th CNS/CNA Student Conference

May 24 - 27, 2010 
Hilton Montreal Bonaventure, Montreal, Quebec



31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010 
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec 

The metric used to control mutations and crossovers is established by following the progression of the 
boundary formed by individuals in the corridors, calculated with the following equation: 

d = E J=1 
1 
C\ fmax fmin 

(2) 

In this equation, fJ, represents the evaluation of objective j of an individual inside the corridor i at 

generation t; f min and f max are the lower and upper bounds of the objective j ; N is the number of ob-

jectives and Cis the number of corridors. 
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Figure 1. Flow sheet of the proposed algorithm. 

The value obtained from Equation (2) is then used to determine a "control" parameter calculated as: 
control = ln(d). After multiple trials, a triggering between operations was established based on this pa-
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rameter and the best values are suggested in Table 1. The solution searching process is based on the 
strategy given in Herrera et al. [14]. The probabilities used for each operator during the present work 
are summarized in Table 2. As the population converges towards the contour of the feasible region, it is 
apparent that parameter d decreases, which allows a convenient limit at which the algorithm stops the 
searching process, to be introduced. Finally, a non-domination sorting procedure is executed to deter-
mine Pareto's optimal solutions. 

Table 1. Suggested values for the control parameter. 

Trigger or action control parameter 

Exploration triggering control ❑ —8 

Hybrid triggering —12 control —8 

Exploitation triggering —18 control —12 

Stop process control —18 

Table 2. Summary of searching process operators. 

Searching phase Operator Probability (%) Type 

Exploration Mutation 

Crossover 

90 

10 

Random 

Uniform 

Hybrid Mutation 

Crossover 

10 

90 

Probabilistic 

Simulated binary 

Exploitation Mutation 

Crossover 

10 

90 

Probabilistic 

Arithmetic 

To handle thermodynamic power-cycles, the optimization technique is coupled to appropriate power 
plant thermodynamic models that are discussed in more detail in Section 4. Figure 2 represents the 
framework implemented to perform both plant simulations and optimization. 

The strategy is composed of the optimizer and a power plant simulator based on specific plant thermo-
dynamic models. The two modules communicate to each other by exchanging data from two blocks. To 
this aim, a "Dynamic Data Exchange" (DDE) protocol running under the Windows XP environment is 
implemented. The first block converts the data into physical variables that are sent to the simulator, 
while the second one evaluates objectives and constraints imposed to the problem, by using the results 
from the simulations. The optimizer generates an initial random population of solutions or individuals. 
They are then used by the plant simulation module to evaluate thermodynamic states that are invoked to 
calculate objectives and constraints required to run, once again, the optimizer. Based on the fitness of 
the individuals, the best ones are selected to pass crossover and mutation operators and thus, to repro-
duce a new population that should be more efficient than the initial one. This new population seeds the 
simulator and the process continues until a convenient stop criterion is reached. 
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The proposed methodology has been largely validated. In fact, the same optimization scheme has been 
used in conjunction with appropriate models to optimize cogeneration and advanced steam power 
plants [7-9]. In addition, a thermodynamic model quite similar to that used in this work was also ap-
plied to simulate the Gentilly-2 nuclear power plant. These calculations, which include models for ma-
jor thermal equipments, were able to reproduce very closely actual operation conditions of the nuclear 
power station [15]. 

3. SCW cycle configurations 

In this paper, four simplified thermodynamic cycles given in Naidin et al. [5] are optimized by using 
the methodology described in the former section. These power-cycles, summarized in Figures 3a to 3d , 
are proposed as the most suitable to be implemented in next generation of SCWNPP. Operation condi-
tions taken from the same reference correspond to topologies that are variants of Rankine's type cycles 
working under the same supercritical water flow conditions of 25 MPa and 625°C performing the same 
mechanical work of 1200 MW. In addition, Figures 3c and 3d show two regenerative Rankine cycles 
which permit the thermal efficiency to be increased by using the latent heat of a fraction of steam ex-
tracted from the turbines to reheat the feedwater before it enters into the reactor core. It must be pointed 
out that the fractions of extracted fluid do not produce useful work but they allow the overall efficiency 
to be increased. Therefore, in such cases, the optimization clearly corresponds to a compromise be-
tween efficiency and mechanical work. In addition, the use of closed feedwater reheaters with two cir-
culation pumps makes these systems more suitable for applications in SCWNPP. In fact, they can per-
mit using less sophisticated pumps while tube-shell heat exchangers may better support the extremely 
high pressures that will be encountered in SCWNPP systems. 
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Figure 3a-d. SCWNPP simplified thermodynamic cycles [5]. 
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Figure 3a-d. SCWNPP simplified thermodynamic cycles [5]. 
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4. Plant simulation modelling approach 

As shown in Figure 2, the optimization relies on a large number of plant simulations performed by 
changing randomly several key thermodynamic variables. Therefore, models for each cycle shown in 
Figures 3a-d are written in Matlab (version R2008a) [16]. The thermodynamic properties of water and 
steam are determined with the XSteam library [17] based on relationships given in IAPWS-97 [18]. For 
a wide range of temperature and pressures covering the supercritical region, both enthalpies and entro-
pies calculated with this library are validated against similar values given in the water-steam table of 
Schmidt [19]. Relative differences, defined with respect to this table are partially compared in Figure 4. 
In general, it is observed that the XSteam library implemented in Matlab systematically underestimate 
(slightly) both enthalpies and entropies, however, maximum differences of about 1% occur within a 
limited region characterized by temperatures ranging from 375 to 385°C. 
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Figure 4. Comparison of water-steam properties predicted by XSteam [17] with values 
given in Schmidt [19] (a) Relative enthalpy difference; 

(b) Relative entropy difference. 

In addition, to correctly compare both the thermal-cycle efficiency and the mechanical power obtained 
from the present optimization with those given in reference [5] we use the same assumptions and defi-
nitions. Therefore, equipments are considered adiabatic (i.e., ideal thermally insulated heat exchangers) 
and pressure losses in the heat exchangers and in steam extraction lines are neglected. Further, turbine 
groups and pumps are assumed to operate under ideally isentropic conditions. The calculation of cycle 
efficiency and mechanical power are estimated from the following objective equations: 

Pk
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where W represents the total mechanical power instead of the net one. Even though this definition of 
efficiency differs from the most common form, i.e., it does not include the mechanical power of the 
pumps, the amount of the power consumed by the pumps is usually very low compared to the output of 
the turbines, therefore, this effect is in general insignificant. 
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Figure 4. Comparison of water-steam properties predicted by XSteam [17] with values  
given in Schmidt [19] (a) Relative enthalpy difference;  

(b) Relative entropy difference. 
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where W& represents the total mechanical power instead of the net one. Even though this definition of 
efficiency differs from the most common form, i.e., it does not include the mechanical power of the 
pumps, the amount of the power consumed by the pumps is usually very low compared to the output of 
the turbines, therefore, this effect is in general insignificant.   
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4.1 The turbine 

Since the early 1950s the principal objectives in designing steam turbines consisted of increasing their 
performance (i.e., decrease internal irreversibilities) by achieving appropriate inter-stage pressure gra-
dients by minimizing undesirable flow leakages and optimizing local velocity distributions [20]. From 
supercritical water viewpoint applications, first works were carried out in USA around the same epoch 
and then the technology spread out in Russia around 1960s. Utilities incorporated a commercial super-
critical turbine technology in the USA with the construction of the AEP Philo unit 6, 125-MW power 
plant in 1957. The operating conditions of this systems are 31 MPa, 621/565/538°C [21]. Even though 
common supercritical water parameters used in state of the art fossil-fuelled power plant are 25 MPa 
and 600°C, few power plants also operate at higher pressure and temperature conditions (i.e., 31 MPa 
and 650°C). Most of these plants directly run supercritical turbines with capacities ranging from 300 
MW to 1200 MW [3]. Modern supercritical turbines substantially differ from one manufacturer to an-
other. Some of these differences concern turbine types (impulse or reaction), shaft combinations (cross 
compound or tandem), and the range of operating conditions (temperature, reheat pressure, etc.). The 
technology, however is improving continuously; thus, it is expected that in the near future they would 
be further developed for application in SCWNPP's. As mentioned above, and to compare the present 
results with those given in Naidin et al. [5], in this work the turbines are assumed isentropic. Figure 5 
summarizes the modeling approach used to simulate the systems presented in Figures 3a-d. Thus, the 
mechanical power produced by the turbine is calculated as: 
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Figure 5. Simple modelling of multistage turbine groups. 
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Figure 5. Simple modelling of multistage turbine groups. 
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4.2 The condenser 

For all cycle studied, it is supposed that the condenser operates under a constant pressure of 6.77 kPa 
(Figures 3) which corresponds to a saturation temperature of 38.3°C. Similar to Naidin et al. [5], we 
assume that the condensate leaves the condenser as saturated liquid. Figure 6 shows the condenser 
modelling approach. 
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Figure 6. Simplified condenser model. 

Following Figure 6, the energy balance equations are written as: 
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where msr and are the steam and cooling water mass flow rates respectively, and C, is the water 

[specific heat capacity determined at the mean cooling water temperature = 
t cw

 
'au, + t cw,a•n
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4.3 Feed water heaters 

A considerable improvement in efficiency is obtained by reheating the feedwater before it enters into 
the reactor core (i.e., regeneration cycles). This process is commonly achieved by extracting some frac-
tions of steam from various turbine stages and to regenerate the latent heat inside feedwater heat ex-
changers. Mainly two types of feedwater heaters are encountered in the power industry; direct contact 
or open type heat exchangers and tube-shell or closed type heat exchangers [22]. In open type feedwater 
heaters the extracted steam mixes with the water. They usually operate in such ways that permit both 
reheating the circulating fluid and extracting non-condensable gases prevailing in the system to be si-
multaneously obtained. Therefore, at the outlet of these units the water is usually under saturated liquid 
state. It is obvious that the simulation of this kind of reheaters is quite simple; they only require solving 
two equations (i.e., a mass balance and an energy balance) under constant pressure conditions. Since in 
this work pressure losses in the steam extraction lines are neglected, this pressure is directly controlled 
by the pressure prevailing at the extractions. It must be pointed out that to perform the optimization 
process, extractions are randomly changed; thus, their pressures also change. In shell-tube type feedwa-
ter heaters, however, heat is transferred from the steam to the water without contact between currents of 
fluids. Furthermore, since steam condenses inside the shell, the heat capacities, the temperature profiles 
and the heat transfer coefficients change along the whole process. Therefore, the simulation of this type 
of units requires an iterative procedure. In the present work we assume that the heat exchanger can be 
divided in the following three zones: i) superheating, ii) condensing and iii) drain-cooling, as shown in 
Figure 7. Because neither the geometrical nor the mechanical parameters of the heat exchanger are 
taken into account, the calculation scheme is relatively simple. 
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Figure 7. Typical three-zone feedwater heater. 

Figure 8 shows expected temperature distributions as well as the variables used to simulate this type of 
feedwater reheaters. 
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4.4 Pumps 

As mentioned before, pumps are considered isentropic; thus, their consumptions are calculated based 
on simple thermodynamic concepts. In all the cases these calculations are performed using the specific 
volume of the fluid determined at the inlet side. In turn, to avoid cavitation, inlet subcooling conditions 
are imposed as constraints. 

5. Results of the optimization 

The optimization strategy discussed in Section 2 jointly with the modelling approach described above 
is applied to each of the supercritical-water power cycles shown in Figure 3. All the optimizations are 
carried out by running the algorithm under the same conditions (see Figures 1 and 2). Thus, a constant 
population of individuals (=200), with the same number of generation (=100) and corridors (=60) are 
used. Previous trials have shown that these values are not very critical; thus they are arbitrary selected. 
It is obvious; however, that the computational time increases with increasing any of these quantities. 
Furthermore, the initial population of 200 solutions (i.e., individuals) required to run the genetic algo-
rithm is generated by the thermodynamic model, where key thermodynamic variables (control parame-
ters) are randomly changed. Depending on the type of cycle, these variables can be different. For in-
stance for the simplest case shown in Figure 3a, only the pressures at states 5 and 6 are considered. In-
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stead, for the complex case (Figure 3d) both pressures and extractions constitutes the control variables 
of the problem. In addition, the optimization must simultaneously satisfy the objectives (Equation 3) 
and the several constraints that are specific to each case. The Pareto's front obtained for the simplest 
cycle given in Figure 3a is shown in Figure 9. 
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Figure 9. Pareto's front obtained for the system shown in Figure 3a. 

This figure includes a table that contains key values of the optimization. As can be observed the effi-
ciency and mechanical power given in [5] are within the predicted Pareto's landscape. However, the 
present optimization results indicate that there exist other operation conditions that produce higher me-
chanical power at the cost of decreasing the overall efficiency. It is interesting to note that the effi-
ciency given in the reference corresponds to almost the maximum output power that this plant can pro-
duce. For a double-reheat cycle (Figure 3b) the optimization variables are the pressures at the exit of 
the HP and IP turbines with a single constraint imposed to the quality at the inlet of the pump. Similarly 
to the former case the objectives are given by Equation 3. Pareto's front obtained for this case is com-
pared with reference values in Figure 10. It is interesting to observe that in this case both efficiency and 
mechanical power given in reference [5] are much lower than the optimal conditions predicted by using 
the present methodology. Nevertheless, Pareto's front clearly shows the competition between the objec-
tives (Equation 3) that is, efficiency decreases with increasing mechanical power and vice-versa. Note 
that in general the variations in discharge pressures permit better trade-offs to be achieved. It must be 
pointed out, however, that these changes must be validated against real operation conditions of the tur-
bines. Therefore, the final optimization is not necessarily useful without introducing a tight interaction 
with plant design engineers. The single-reheat cycle with heat regeneration through an open type feed-
water heater shown in Figure 3c, is optimized by changing the pressures at the extraction and at the exit 
of the HP turbine as well as the fraction of extracted steam. Equation 3 is used as objectives while at 
least three constraints must be satisfied during the process. Beside the restrictions imposed to some 
steam qualities, to avoid cavitation the liquid entering into the pump is forced to be slightly sub-cooled. 
The results of the optimization presented in Figure 11, show particular features. In fact, Pareto's front is 
characterised by three distinct zones. The analysis of this behaviour is quite complex. As a matter of 
fact, the representation given in Figure 11 corresponds to a simple projection of a multi-dimensional 
space into two dimensions (i.e., in this case this space has at least five dimensions). Therefore, only a 
careful representation of all variables that control the solution space can help us to understand the par-
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space into two dimensions (i.e., in this case this space has at least five dimensions). Therefore, only a 
careful representation of all variables that control the solution space can help us to understand the par-
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ticular behaviour of Pareto's front. In some cases there are preponderate variables that determine the 
dynamics of the system. 
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Figure 10. Pareto's front obtained for the system shown in Figure 3b. 

In this particular case we have observed that the first zone (Figure 11) seems to be controlled by the 
pressure in such a way that the efficiency decreases and the mechanical power increases with decreas-
ing the pressure at the extraction and at the exit of the turbine. 
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to be mainly controlled by the pressure in a similar way as zone 1. Furthermore, it is interesting to note 
that Pareto's front provides a large number of possible solutions which permit higher efficiencies and 
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mechanical work than those given in the reference, to be achieved. The regeneration cycle shown in 
Figure 3d is optimized by considering a larger number of degrees of freedom. Its optimization is based 
on pressures at the extractions and at the exit of the HP-turbine as well as steam fractions at points 11 
and 12. Note that the fraction of steam from point 8 is imposed by the balance of mass and energy ap-
plied to the open reheater that works as the deaerator unit of the power plant. Therefore, the flow at the 
exit of this equipment is considered to be under saturated liquid condition, which is considered as an 
additional constraint of the problem. To avoid cavitation, subcooled conditions are also imposed to the 
liquid at the inlet of the pumps. Control variables and constraints are summarized in Figure 12. This 
figure also presents the Pareto's front obtained for this system as well as the reference plant state [5]. 
The front is characterized by four distinct zones. Even though all control parameters vary randomly 
along the front, each zone seems to be essentially conditioned by one preponderate variable. Hence, 
careful analyses of the predicted data (i.e., eight dimensions space) show that the first zone is mostly 
determined by the pressure at the exit of the LP-turbine (point 8 in Figure 3d). In this zone, efficiency 
decreases and mechanical power increases with decreasing the pressure. The second zone is mainly 
controlled by the fraction of steam extracted at point 11. It is observed that efficiency increases and me-
chanical power decreases with increasing the mass flow rate of this extraction. This result corroborates 
basic thermodynamic principles, i.e., the extraction of a fraction of steam allows a gain in efficiency at 
the expense of losing some turbines' work. The abrupt knee change observed in zone 3 of Figure 12 
seems to be mostly controlled by the steam extracted at point 12; thus, thermal efficiency increases and 
the mechanical power decreases with increasing the extraction mass flow rate. Finally the last region is 
conditioned by the pressure at point 8 following behaviour similar to zone 1. It must be pointed out that 
the pressure at point 11 and 12 do not considerably change; they stay almost constant to their lowest 
limit imposed by the optimizer, therefore they do not have a significant effect on Pareto's front. 

Similarly to other cases studied, the present optimization method provides a wide range of thermody-
namic conditions under which both thermal efficiency and mechanical power are much higher than the 
values suggested in Naidin et al. [5]. 
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Figure 12. Pareto's front obtained for the system shown in Figure 3d. 
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Due to the relative complexity of this cycle, a comparison between the optimum conditions selected 
from the Pareto's front close enough to the reference case is given in Table 3. In general, the values of 
most thermodynamic variables are quite similar, however, major differences are observed around steam 
extractions. Thus, the total mass flow rate of steam extractions for the optimized system is about 11% 
higher than the reference case. However, it is interested to note that a higher total value of the extrac-
tions permits both thermal efficiency and mechanical power to be considerable higher than the refer-
ence case. 

Table 3. Comparison between the reference case [5] 
and optimized system of Figure 3d. 

State 

Reference case 

T(' C) P (MPa) h (kJ I kg) 

Present optimization 

T(°C) P (MPa) h (kJ I kg) 

1 38.3 0.00677 160.8 38.4 0.00677 160.77 

2 38.5 5.0 166.0 38.51 4.15 164.94 

3 200.0 5.0 850.0 210.3 4.15 899.86 

4 265.0 5.0 1155.0 252.53 4.15 1098.11 

5 270.0 25.0 1180.0 257.93 25.0 1124.11 

6 350.0 25.0 1624.0 351.99 25.0 1637.94 

7 625.0 25.0 3567.0 625.0 25.0 3566.77 

8 350.0 5.0 3065.0 322.57 4.15 3018.78 

9 625.0 5.0 3725.0 625.0 4.15 3731.29 

10 38.3 0.00677 2270.0 38.38 0.00677 2299.97 

11 540.0 16.2 3415.0 489.81 12.15 3320.26 

12 450.0 1.6 3314.0 412.18 1.20 3287.31 

13 275.0 16.2 1210.0 263.93 12.15 1153.16 

14 45.0 1.6 185.0 44.51 1.20 187.42 

Extractions (%) 

x 20.0 23.70 

y 10.0 6.52 

z 15.0 20.00 

Efficiency (%) 52.7 56.4 

Mass flow rate (kg/s) 1030 1030 

Thermal power (MW) 1200 1197.3 

6. Conclusions 

The purpose of the present work is to apply an innovative optimization technique to power thermody-
namic cycles proposed to run future Supercritical Water Reactors. The proposed methodology is based 
on coupled calculations implemented around genetic algorithms and a series of thermodynamic plant 
models. To this aim, the in house optimization software "BEST" is linked to a Matlab plant simulator 
via a DDE protocol. The simulations are performed by randomly changing key thermodynamic vari-
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extractions. Thus, the total mass flow rate of steam extractions for the optimized system is about 11% 
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tions permits both thermal efficiency and mechanical power to be considerable higher than the refer-
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The purpose of the present work is to apply an innovative optimization technique to power thermody-
namic cycles proposed to run future Supercritical Water Reactors. The proposed methodology is based 
on coupled calculations implemented around genetic algorithms and a series of thermodynamic plant 
models. To this aim, the in house optimization software “BEST” is linked to a Matlab plant simulator 
via a DDE protocol. The simulations are performed by randomly changing key thermodynamic vari-
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ables while the optimizer evaluates competing objectives until the whole process converge toward a 
convenient Pareto's front. A metric is introduced to control the entire iterative procedure. 

This work permits us to demonstrate that the proposed cycles given in the open literature still have 
plenty of possibilities for increasing both efficiency and output power. In some cases, we are able to 
determine that the landscape of Pareto's front is mostly controlled only by few key parameters. These 
results may be very useful for future plant design engineers. However, it must be pointed out that none 
of the analyses presented in this paper are completely useful without considering essential design fea-
tures, in particular for the turbines (i.e., limitations on both local pressures and amount of extracted 
steam, internal irreversibilities, etc.). Therefore, to include particular restrictions imposed by real tur-
bine operation conditions, additional work should be still carried out. 
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