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Abstract 

In this paper, we propose a method for fuel pin/ring flux reconstruction for CANDU applications. This 
method is based on the modulation method where the core mesh flux is reconstructed by multiplying the form 
factor and an interpolated mesh flux along with an appropriate normalization. This method was adapted to a 
finite difference method. The implementation of the method and test results will be presented. 

1. Introduction 

The use of homogenized parameters to predict reactor properties results in an inevitable loss of certain 
information, which would otherwise be available if the reactor were analysed by methods not involving 
homogenization. However, a reactor may contain several hundred fuel assemblies (channels), and each 
assembly/channel may include several hundred of fuel pins. Hence, an explicit representation of heterogeneous 
assemblies requires tens of thousands different regions. With the actual computing capability, such detailed 
three-dimensional (3-D) transport calculations are not feasible. However, if we are satisfied knowing only the 
average values of spatial flux distributions, the 3-D diffusion solution will constitute the final solution. On the 
other hand, in reactor design analysis we often need direct information about the local pin-flux distribution for 
the heterogeneous assemblies. For this reason, after having solved the full-reactor-core problem, we have to 
look into the possibilities of recovering in second step information on local properties of single heterogeneous 
assemblies (going backward). Such a two-step approach for 3-D reactor calculations has a practical advantage. 
Assuming sufficient accuracy in solving the global reactor problem one can temporarily forget most of the 
details and complications of the heterogeneous reactor core which may be re-introduced in the second step 
where and when necessary. This procedure requires a coupling between the global diffusion solution and the 
heterogeneous assembly (lattice) calculation. 

In CANDU2 reactor analysis, the highest bundle power obtained is translated into a maximum pin power using a 
factor representing the ratio of the highest pin power to the average pin power. The ratio is pre-determined (as a 
function of fuel burnup) by lattice-cell calculation, which does not take into account the effect of any global flux 
gradient across the cell. Thus the environment effect on the bundle under consideration and its pin power 
distribution is ignored. A correction or adjustment to allow for possible azimuthal tilt in the pin power 
distribution would be made if judged required or for conservative reasons. This method is limited since it does 
not take into account the intranodal (inside the cell) flux at the core calculation level. Hence the method 
proposed here will improve the current technique for fuel-pin flux/power reconstruction in CANDU core 
analyses. 

In the Light Water Reactor (LWR) industry, most of the modem neutronics codes employ advanced nodal 
methods. The pin-flux information is obtained through a pin flux "reconstruction" or "dehomogenization" 
process. The terms reconstruction and dehomogenization arise from the fact that the neutron flux calculation 
performed in a nodal code is based on homogenized nodal cross sections so that the resulting intranodal flux 
distribution can not reflect any local heterogeneity within an assembly. A reconstruction process is thus required 
to incorporate the actual heterogeneous structure of each assembly into the smoothly-varying intranodal flux 
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distribution. These reconstruction methods have reached high levels of development in LWR and have become 
standard analysis tools because they extend the usefulness of computationally efficient nodal methods and 
eliminate the need to perform full-core fine-mesh calculations. All these methods intuitively assume that the 
flux shape in an assembly can be approximated by superposing lattice-based "heterogeneous" form functions on 
a core-based "homogeneous" intranodal shape function. These methods are commonly named Form Function 
Methods and in some literature these methods are also called Modulation Methods. For consistency and 
simplicity, in the following we will use the terminology borrowed from the nodal method: the average node flux 
corresponds to the average mesh flux and the intranodal flux to the spatial mesh flux. 

2. Theory 

The pin-flux reconstruction process involves a fundamental assumption; that is, detailed pin-by-pin distributions 
within an assembly/bundle can be estimated as the product of a global intranodal distribution and a local 
heterogeneous form function. The form function accounts for bundle heterogeneities and it is generated for each 
fuel assembly type by a lattice-physics code at the same time that the homogenized cross sections are generated. 
The assumption of separability of the global intranodal flux and the local form function is commonly adopted in 
various pin-flux reconstruction methods that have been extensively researched in the past two decades [1] [2]. 
The assumption has been shown to be valid such that the reconstruction methods are regularly used in best-
estimate reactor safety analysis of non-CANDU power reactors. The flux is then obtained by combining these 
two functions (fluxes): 

(1)(x, y) reactor = 0 (X , Y)hom X qi(x, Y)her (1) 

where 0(x, y)hom is the "homogeneous" intranodal flux calculated by the nodal diffusion method at core level; 

and 'P(x, y)het is the "heterogeneous" form function evaluated at lattice level. 'P(x, y)het can be obtained by 

using a single-cell (assembly) model or by a multi-assembly (colorset) model. The form function must account 
for assembly heterogeneities caused by water holes, burnable absorber pins, enrichment variations, etc. This 
factorization approximation is justifiable because the neutron free mean path is very small compared to the 
assembly/bundle dimensions so that the lattice effects and global (whole reactor) effects can be "decoupled". 

2.1 The Reconstructed Intranodal Flux 

Using the surface-average fluxes and currents and corner point fluxes as well as the node-average flux, the 
intranodal group flux is approximated for every node by assuming that the flux within a node is separable in the 
x-y plane and axial directions (I) g (x, y, z) = (1) g (x, y) x 0g (z) . With this separability assumption, the axial flux 

distribution can be interpolated by a quadratic polynomial. The expansion coefficients are determined by 
requiring the node-average flux and the top and bottom surface-average fluxes to be reproduced. 

In the x-y plane, the flux distribution 11) g (x, y) is expanded for each energy group into a linear combination of 

polynomials of order N: 

N 

43i g ( X  1 Y) = Ecf fn(x,y) 
n=1 

(2) 

The fn (x, y) functions belong to an N-dimensional polynomial space and represent its basis. The expansion 

coefficients cng are determined by the node parameters namely, the node average flux, the four surface-average 

fluxes, and the four corner point fluxes: 
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cg mcg'(O g,0f,0!) (3) 

For the given node parameters, the problem is reduced to that of finding a unique set of basis functions that will 
allow the interpolation of the intranodal flux (Eq. 2) by satisfying the constraints imposed on the node 
parameters. The problem then becomes purely mathematical and the choice of an adequate polynomial space is 
the key to an accurate solution. In the context of the coarse mesh finite difference (CMFD) method and 
considering a polynomial space of order 2 (N=2), Eq. (2) can be rewritten as follows: 

2 

ITO g (x y) = Eqxiyj 
ii=o 

(4) 

where the homogeneous flux is expanded on polynomials in each square node (side length equal to h). Knowing 

the node quantities, the task is to determine the nine coefficients cg that satisfy Eq. (4). 

2.2 The Form Function 

The calculation of the form function li(x, y) is performed at the lattice level. In LWR more detailed and 

accurate fuel-pin flux distributions can be obtained because the fuel pins are arranged in square assemblies. In 
contrast, the CANDU fuel pins are arranged in a cylindrical cluster geometry. The fuel-pin flux (or power) 
distribution is in practice more complicated to apply in the diffusion code with Cartesian geometry. One way to 
overcome this is to consider the average flux (power) per ring. This suggests the assumption that the fuel pins 
belonging to the same ring experience similar neutron exposure. In fact, this assumption is reasonable when 
reflective boundary conditions are used in an infinite lattice calculation. However, when the effect of unlike 
neighbour lattices is taken into account or when an absorber is present in the vicinity, this assumption is less 

credible. A practical approach is that the transport flux 'FL at any discrete position (n, m) is computed using an 

infinite lattice calculation with reflective boundary conditions. The 'FL will depend on the lattice local 

parameters such as burnup, the presence of devices, and the neighbours (in the case of multicell). The two-group 
fluxes per ring should be calculated and tabulated at the same time as the generation of the homogenized cross 
sections. Note that the calculation surface fluxes at the edges might be necessary to obtain an accurate flux 
distribution. To be consistent with Eq. (1), the form functions should be dimensionless. To do so, a 
normalization of the form function should be introduced. 

Usually the flux-volume-weighting homogenization is performed after the lattice calculation. To be consistent 
with this, one way to normalize the form function is to use the homogenized average lattice flux in such a way 
that the form function is obtained from this equation: 

q'T 

=  • 
I'm " 

where 'FT is the average lattice transport flux, defined as: 
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= -
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and V is the volume of the lattice. 
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The heterogeneous flux distribution in each node at point (n, m) and in each group g is obtained by multiplying 
the form function and the flux expansions for each energy group (Eq. 4): 
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and V is the volume of the lattice.  

2.3 Reconstruction of the Heterogeneous Node Flux  

The heterogeneous flux distribution in each node at point (n, m) and in each group g is obtained by multiplying 
the form function and the flux expansions for each energy group (Eq. 4): 
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N 
O g m nm 
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(13) 

There is a shortcoming in using the flux-volume normalization technique for the form function, in that the 
continuity of the form function (and the reconstructed flux) at the edge of the cell is not assured. To overcome 
this problem, another way to normalize the form function is to utilize the Selengut factor [3]. The Selengut (i.e 
assembly discontinuity factor ADF) is defined as: 

f dStli r (x, y) 

=  (14) 
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where S is the cell surface. In this case the macroscopic cross sections used in reactor calculations are 
normalized along with the form function in this way: 

0 =  1  OF:m xcb ( 1 Eg) (15) :m rg nm rg

where E g symbol represents all the homogenized macroscopic cross sections involved in the reactor core 
calculations. For all the results shown in this paper only the flux-volume normalization technique was utilized. 

3. Numerical results 

The MINER (Multigroup Iterative Neutronics External Replacement) solver [4] was developed in order to have 
a flux solver that is more flexible than the flux solver in RFSP [5]. The MINER code includes both a finite-
difference [6] solver and a Green's function nodal-expansion [7] solver. Either solver can solve multi-group 
problems, with and without ADFs. The MINER solvers can be used independently to solve standard benchmark 
problems, or can be used with RFSP to solve full-core problems based on the RFSP input file. The modulation 
method presented here has been implemented in the MINER solver with the finite-difference method in 2-D 
form. 

For performing the intranodal flux reconstruction computations, the MINER solver was used in its stand-alone 
form. The MINER solver currently consists of a collection of codes that work together. The MINER-derived 
intranodal flux computations in this report proceeded in 3 stages: the parsing of the model input data, the flux 
solution, and the intranodal flux reconstruction. 

3.1 The 5x1 Benchmark Problem 

The 5x1 benchmark problem is illustrated in Figure 2. The 5x1 geometry included 4 fuel lattice cells and 1 
reflector lattice cell. All 4 fuel cells were one uniform fuel type: the CANDU-6 37-element natural-uranium 
(NU) fuel with a burnup of 1482.75 MWd/Te. A 4x4 mesh splitting in each node was used. 
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Figure 2 Problem Geometry for 5x1 Benchmark Problem 

The final fuel-pin reconstructed fast and thermal flux results using the modulation method are plotted in Figure 3 
and Figure 4. The homogeneous lattice properties were calculated from the single cell calculation. The WIMS-
calculated reference heterogeneous flux solutions are also included in these plots for a comparison. The 
maximum percent difference for the fast and thermal fluxes between the reconstructed and the reference fluxes is 
about 5 % for cells 1, 2 and 3. The percent difference is higher at the interface between cell 4 and the reflector: -
17% for the fast flux and -10% for the thermal flux. 
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Comparison of Reconstructed Thermal Flux and WIMS Reference Solution 
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3.2 The 3x3 Benchmark Problem 

The 3x3 benchmark problem is illustrated in Figure 5. The 3x3 geometry included 9 lattice cells with three 
types of fuel: the CANDU-6 37-element NU fuels at 3 different burnup values. These 3 lattice cell types were 
given the names 'Fuel type 1', 'Fuel type 2', and 'Fuel type 3' with the fuel burnups at 1482.75 MWd/Te, 
5860.14 MWd/Te and 8348.67 MWd/Te respectively. The homogeneous lattice properties were calculated from 
the single cell calculation. For all MINER calculations, 4x4 mesh splitting in each node was used. To compare 
with the WIMS-AECL reference results, the fluxes were illustrated at 3 different lines through the 2-D 
geometry. These 3 lines are shown in Figure 12. 'Line 456' and 'line 789' are the two horizontal lines along 
y=0 and y=28.575 through the centers of the respective cells. 'Line 159' is the diagonal line along y=x through 
the centers of cells 1, 5, and 9. 
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y=0 and y=28.575 through the centers of the respective cells.  ‘Line 159’ is the diagonal line along y=x through 
the centers of cells 1, 5, and 9. 
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Figure 5 Problem Geometry for 3x3 Benchmark Problem 

The reconstructed thermal flux, for line 456, using the modulation method is presented in Figure 6. The WIMS-
AECL calculated reference heterogeneous flux solution is also included in this plot for comparison purposes. 
The results for lines 789 and 159 are shown in Figure 7 to Figure 8. For these cases, the maximum percent 
difference in thermal flux between the reconstructed and the reference flux is in general less than 3%. Some 
larger differences less than 4% were observed at the boundary. 
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Comparison of Reconstructed Thermal Flux and WIMS Reference Solution for cells 456 
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Figure 6 Reconstructed Thermal Flux and WIMS-AECL Reference Solution for Cells 4,5,6 in the 3x3 
Benchmark 

Comparison of Reconstructed Thermal Flux and WIMS Reference Solution for cells 789 
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Figure 7 Reconstructed Thermal Flux and WIMS-AECL Reference Solution for Cells 7,8,9 in the 3x3 
Benchmark 
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Figure 7 Reconstructed Thermal Flux and WIMS-AECL Reference Solution for Cells 7,8,9 in the 3x3 
Benchmark 
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Comparison of Reconstructed Thermal Flux and WIMS Reference Solution for cells 159 
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Figure 8 Reconstructed Thermal Flux and WIMS-AECL Reference Solution for Cells 1,5,9 in the 3x3 
Benchmark 

4. Conclusions and Future Work 

In this paper we have proposed a fuel-pin flux reconstruction method for CANDU-type reactor applications. 
Preliminary results show a good agreement between the reconstructed flux and the corresponding heterogeneous 
transport flux for two different 2-D benchmark problems. In the future this method will be extended to 3-D 
problems where tests including absorber devices will be performed. The Selengut-type normalization will also 
be implemented. 
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Figure 8 Reconstructed Thermal Flux and WIMS-AECL Reference Solution for Cells 1,5,9 in the 3x3 
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4. Conclusions and Future Work 

In this paper we have proposed a fuel-pin flux reconstruction method for CANDU-type reactor applications.  
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