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Abstract 

With the rise of a new generation of ADS (Accelerator-Driven System) nuclear reactors it is 
important to have a rapid and accurate prediction of the variation in reactivity during a possible 
variation in the intensity of external sources. This paper presents a formulation for the calculation of 
reactivity in subcritical systems using the inverse method as related only to nuclear power derivatives. 
One of the applications of the proposed method is the possibility of developing reactimeters that 
allow the continuous monitoring of subcritical systems. 

1. Introduction 

The analytical solution of point kinetics equations with a group of delayed neutrons is useful in 
predicting neutron density variation during the start-up of existing nuclear reactors. With rise of a new 
generation of ADS (Accelerator-Driven System) nuclear reactors [1], the rapid and accurate prediction 
of the variation in reactivity during a possible variation in the intensity of external sources becomes 
necessary [2]. Results found in the literature show that, the closest a multiplicative system is to 
criticality, the less dependent of the source it becomes, and that, although they describe in a reasonable 
manner the temporal behaviour of a subcritical system, conventional point kinetics equations [3,4,5] do 
not have good accuracy in such analysis. 

This paper presents a formulation of inverse kinetics for subcritical systems based on nuclear power 
derivatives. This formulation is based on the set of point kinetics equations proposed by Gandini & 
Salvatores [6] specifically to describe subcritical systems. 

2. Point Kinetics for Subcritical Systems 

Considering the time-dependent neutron transport equation, 
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This function importance is the same proposed by Gandini and Salvatores [6], though with a slightly 
different notation and taking the angular dependence into account. 
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The system of point kinetics equations formed by equations (22) and (25) is similar to the system of 
equations defined by Gandini and Salvatores [6], being different however in the integral parameter 
a, that multiplies the second term of the right side of equation (22) that, although it appears in the system 
of reference equations [6], is not found in the system of equations (22) and (25) presented here. 
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3. Inverse Kinetics for Subcritical Systems 

Equation (25) can be formally integrated in time, subjected to the condition that the ith generalized 
concentration of precursors (t) is null in an instant infinitely before instant t: 
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Equation (31) represents the reactivity obtained by the inverse method for subcritical systems 
considering the set of point kinetics equations proposed by Gandini and Salvatores. The expression for 
the proposed reactivity, i.e. equation (31), is exact, and considers external sources that vary in time and 
will be used as a reference in the validation of the new formulation that will be presented in the next 
section. 

3. Inverse Kinetics for Subcritical Systems 
 
Equation (25) can be formally integrated in time, subjected to the condition that the ith generalized 
concentration of precursors ( )tiξ  is null in an instant infinitely before instant t:    

( ) ( )'
'

'
,

t
t ti

t P t e dti i eff
λ

ξ β
 
 
 

−∞

− −
= ∫ .                                                      (26) 

 
Supposing that ( )0 00P t P< =  one can separate equation (26) into two parts: 
 

( ) ( )0
00

'
' '

'
,

i it
i

t t t t
t P e P t e dti eff

λ λ
ξ β

   
   
   

−∞

− − − −
= +∫ ∫

 
 
  

,                                          (27) 

 
or still: 
 

( ) ( )0
0

' '
'

i
i ti

i
i

t t tP
t e P t e dti

λβ λξ β
λ

 
 
 

− −−= + ∫ .                                             (28) 

 
Replacing equation (28) in equation (22) and resolving for reactivity ( )tρ , one has the following 
expression: 
 

( ) ( ) ( )
( )

( ) ( ) ( )
1

1 1
ln 1 .,

I

i
i

extq td
t l P t H teff eff i effd t P t P t P t

ρ β ς λ β
=

= + + − − − ∑
 

    
 

             (29) 

 
where H(t) is the history of power as expressed by: 
 

( ) ( )'( ) ' '0
0

i i
tt t t

i

PH t e e P t dtλ λ

λ
− − −= + ∫ .                                                     (30)  

 
Thus, the expression for reactivity based on the nuclear power can be written thus: 
 

( ) ( ) ( )
( )

( ) ( ) ( )0
0,

1

'
'

1 1 'ln 1 .
i

i
I t

eff eff i i eff
i i

ext t
t tq t Pd tt l P t e e P dt

d t P t P t P t

λλρ β ς λ β
λ

 
 
 

=

− −−= + + − − − +∑ ∫
  
     
  

         (31) 

 
Equation (31) represents the reactivity obtained by the inverse method for subcritical systems 
considering the set of point kinetics equations proposed by Gandini and Salvatores. The expression for 
the proposed reactivity, i.e. equation (31), is exact, and considers external sources that vary in time and 
will be used as a reference in the validation of the new formulation that will be presented in the next 
section. 
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4. Formulation for Determining Reactivity in Subcritical Systems 

In a recent paper, Diaz et. al. [7] proposed a new formulation to deal with power history in critical 
systems using conventional point kinetics equations. This formulation can be extended to the case of the 
inverse kinetics of subcritical systems. 

The integral found in equation (31) can be re-written integrating it in parts n times: 
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where 13(n) (t) represents the n-order derived from nuclear power and P(°) (t) = P(t). 

Equation (32) can be written in a more convenient manner, assuming that the nuclear power meets the 
following conditions: 
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Independently from the index k being even or odd, Diaz et. al. demonstrated that equation (32) can be 
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where (1:0= P(0) Po is the initial normalized power of the operation period considered in the reactor, 

the following expression for reactivity is obtained: 
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Equation (37) is a simple and easy-to-implement expression for the calculation of reactivity in 
subcritical systems. 

5. Applications 

This section studies reactivity behaviour using equation (37) for different variations of the nuclear 
power. 

5.1 Constant power 

Let us consider that in an arbitrary period of the commercial operation the nuclear power is kept 
constant. It can be expected that during this operating period the external neutron source is also constant 
and equal to go . In order to study the variation of reactivity associated to this regime one makes 

q(t) = q 0 and P(t) = Po in equation (37), obtaining the following expression for reactivity associated to 

the system: 

( 1 '70
p (t) = g 1—  — 

P PPo
(38) 

where 4- is defined in equation (20). From equation (38) one sees that system reactivity is strongly 
dependent on the source as well as on the level of power required. 

5.2 Linear variation of the nuclear power 

During the start-up process of a nuclear reactor one can represent a linear power rise thus: 

P(t)= Po am; (39) 

where Po is the initial reactor power and w is the rise rate for the nuclear power. Let us consider an 
external source that varies linearly, written by: 

qext (t) = go etk (40) 

where qo is the initial intensity of the source of neutrons inserted in the system and c is the rate of linear 
insertion for external neutrons. 

The main motivation of this source model is the possible practical application of the obtaining of a 
smooth and linear power rise during reactor start-up that does not harm the structural composition of its 
components in the case of ADS reactors [1]. 

Where the normalized nuclear power is written by equation (39), one has that P(1) (t) = w and P(2) (t) = 0 . 

Replacing these results in equation (37) one has, considering a group of generalized neutron precursors, 
the following expression for reactivity: 
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The asymptotic behavior pa s s (t) for reactivity as expressed by equation (42) depends on the level of 

sub-criticality of the system and on the velocity of insertion for the neutrons coming from the external 
source. For a system that nears criticality and a constant source (c rz 0 and e = 0) the result obtained 

from equation (42) reproduces the expected result pass' (t) = 0 . Results obtained from equation (41) will 

be presented in the results section. 

5.3 Exponential variation of the nuclear power 

In this case we consider a steep nuclear power rise considering an external neutron source that varies 
linearly in time as the one described by equation (40). A simple model for a situation of this kind is that 
of the exponential variation of the nuclear power, represented by the following expression: 
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following expression: 
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From equation (45) once concludes that the external source loses importance with the passing of time 
and ceases to drive the system, as expected. The results obtained from equation (45) are shown in the 
next section. 
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6. Numerical Method 

As a reference in the validation of the expression for the reactivity obtained in this paper, equation (37), 
equation (31) will be numerically calculated, with its discretisation being written thus: 

Pg = peff
leff pi - Pi -1 

+ 1- 
1 of 

; 
P.' St 

g . 
qp 

P 6 1 6 0.  E 13.e  E 213.ft
1 i.1 " 9' 
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Where st.t1-t;_i , P(t./ ), qexr (ti ), pg = p(ti ) and ti is the time passed in the jth iteration and 

= H(t) et. (5-t)P(Odt' 0 (47) 

For the numerical implementation of function Ht it is necessary that a recursive relation is obtained 

from equation (47). For that, let us consider an instant ti = t1_1 + St such that: 
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Recognizing in equation (48) the very function it is possible to establish the following recurrence 

relation for the pseudo history of power: 
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where function R(t.+8t) , written thus: 

_Al (t . _t
R(t +6.0= j. e ( ')d'i. 

(49) 

(50) 

Equation (50) can be numerically integrated at every instant in time using Simpson 3/8 method [8], 
which consists of approximating integrals, defined from the following expression: 
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All numerical simulations used mesh point St = les . 

7. Results 

Figure 1 shows reactivity variation as obtained from a linear variation in nuclear power, represented by 
P(t)=1+0.02t, using equation (41) and the detailed numerical method of reference represented by 
equation (46). The external source considered is represented by Q(t)=1+0.002t. 
The following nuclear parameters were used, valid for all numerical simulations in this paper: 
X :1.00127, :1.0493, 13efH).00009 ant leff.=6.25x10-5. 
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Through the comparison of the results shown in Figure 2 it is possible to see the concordance between 
the analytical method to calculate the reactivity for subcritical systems with the inverse method, 
equation (37), and the numerical reference method. Thus, a study can be made on the influence of the 
sources of neutrons on the reactivity in subcritical systems via equation (37). 
The variation of reactivity obtained from equation (41) for different variation of the source of neutrons is 
found in Figure 3 for a nuclear power represented by P(0=1+0.2t. 
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Figure 3 Calculation of reactivity p (t) from equation (41) for different external sources and 

P(t)=1+0.2t. 

Through the results shown in Figure 3 one can see the influence of the external neutron source in the 
variation of the reactivity when it rises linearly according to equation (39). 

The variation of reactivity obtained from equation (44) for an exponential power increase for different 
profiles of external neutron sources can be seen in Fig. 4. 
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8. Conclusions 

The inverse point kinetic equation for subcritical systems presented in this paper, equation (37), shows 
the possibility of considering arbitrary sources, inclusive those variable in time, to determine reactivity 
in subcritical systems. The formulation presented is simple and allows one to obtain reactivity behaviour 
data as resulting from variations in time of the nuclear power and of the external neutron source. The 
analytical results obtained have shown to be precise through comparison with results found in the 
literature and numerical reference data. 

One of applications of the proposed method is the possibility of developing reactimeters that allow the 
continuous monitoring of subcritical systems, independently from the nuclear power history. 
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