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Abstract 

Advanced Measurement and Analysis Group Inc. (AMAG) is a developer and manufacturer of the non-
intrusive ultrasonic cross correlation flow meter CROSSFLOW, which is installed in nuclear reactors in 
Canada and around the world. To meet growing demand for better accuracy, AMAG and De Montfort 
University started a joint project to develop a mathematical model of the meter, based on turbulence 
dynamics. In the first year, a simplified model was developed. Predictions made by this model were 
confirmed by conducted experiments and computational flow simulations. The model can be used to 
predict the effect of flow disturbances on meter readings. 

1. Introduction 

Measuring turbulent pipe flow is of great importance in the nuclear power industry. The ultrasonic 
cross correlation flow meter can be used in environments of high radiation, temperature, and 
temperature variation, and it is non-intrusive. The technology was originally developed in the UK for 
multi-phase flows [1]. Canadian General Electric developed the first cross correlation meter for a 
single-phase flow [2]. Advanced Measurement and Analysis Group Inc. (AMAG) is a developer and 
manufacturer of the non-intrusive ultrasonic cross correlation flow meter CROSSFLOW, which is used 
in Canadian reactors and all over the world for feed-water and for reactor coolant flow measurements, 
and other applications [3,4]. The ultrasonic cross correlation flow meter measures the velocity of 
turbulent eddies in the flow, and not the average flow velocity. There are methods for determining the 
average flow velocity from information provided by the ultrasonic cross correlation flow meter, though 
these methods are mostly empirical [3,4,5]. To expand the capability of cross correlation flow 
measurement technology, it is necessary to derive a theoretical model that is based on turbulence in a 
pipe. To meet growing demand for higher accuracy and reliability of flow measurements in nuclear 
power plants, in 2009 AMAG and De Montfort University (DMU) started a joint project to develop a 
mathematical model of the cross correlation flow meter, based on accurate description of the dynamics 
of turbulent eddies, and on the effect of the eddies on the ultrasonic wave generated by the meter. 

This paper explains how cross correlation flow measurement technology works, and then gives a brief 
description of research conducted in the first year of the project, to explore the possibility of predicting 
the cross-section average pipe flow velocity based on measured velocity of turbulent eddies. A 
simplified theoretical analysis of cross correlation flow measurement and related fluid dynamics 
phenomena has been conducted. Predictions of the theoretical analysis were compared with results of 
tests conducted in the AMAG laboratory, and with conducted computational simulations of the AMAG 
flow loop. The results of the flow tests and computational simulations confirmed theoretical 
predictions. Results of the simplified theoretical model can be used to predict the effect of flow 
disturbances, such as upstream elbows, on meter readings. 
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The results of the study presented in the paper could not be obtained without support from many people 
from AMAG and DMU. Especially, authors express their gratitude to Samir Fahs, Yuri Gurevich, Varun 
Kanda, Brendan Sharp, and Armando Lopez from AMAG, and Professor Goman from DMU. 

2. Underlying Principles of Ultrasonic Cross Correlation Flow Meter 

The simplest design of an Ultrasonic Cross Correlation Flow Meter consists of the following 
components: 

- Four ultrasonic probes (two transmitters and two receivers) 
- A Signal Conditioning Unit (SCU) 
- Flow measurement computer, called Signal Processing Unit (SPU) 
- Cables connecting SCU to probes and SPU 

Setup of the system is shown in Figure 1. 
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Figure 1 The ultrasonic cross correlation flow meter. 

The Transmitter and Receiver upstream of the flow are called Transmitter A and Receiver A 
respectively, while the Transmitter and Receiver downstream of the flow are called Transmitter B and 
Receiver B, as is shown in Figure 1. Transmitter A and Receiver A are set up opposite of each other at 
the same pipe cross-section. The distance between them is hence the outer diameter of the pipe. 
Transmitter B and Receiver B are set up in the same manner at a downstream cross-section. The two 
cross-sections are called Cross-Section A and Cross-Section B respectively. (See Figure 2) 
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respectively, while the Transmitter and Receiver downstream of the flow are called Transmitter B and 
Receiver B, as is shown in Figure 1. Transmitter A and Receiver A are set up opposite of each other at 
the same pipe cross-section. The distance between them is hence the outer diameter of the pipe. 
Transmitter B and Receiver B are set up in the same manner at a downstream cross-section. The two 
cross-sections are called Cross-Section A and Cross-Section B respectively. (See Figure 2)
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Figure 2 Pipe cross-section with attached transmitter and receiver. 

The four probes along with the mechanism that holds them on the pipe is called the transducer, the 
distance between Cross-Section A and Cross-Section B is called the transducer spacing. The cross-
section of the pipe located at the midpoint between Cross-Section A and Cross-Section B is referred to 
as the cross-section at which the meter is installed. 

The flow measurement process works as follows (Note: The description is simplified.): 

1 — Flow parameters, such as pipe diameter, fluid density, temperature, etc are entered into the SPU. 

2 — Suitable ultrasonic frequencies for the particular pipe, called Carrier Frequencies, are determined 
such that the desirable amplitude of ultrasonic signals is obtained by the receivers. The process of 
determining the carrier frequencies is not described in this report. 

3 — Transmitters A and B continually send two different ultrasonic signals with Carrier Frequencies. 

As turbulent eddies pass through the ultrasonic beams, the beam's frequency slightly alters due to a 
Doppler shift caused by the eddies. The signal received by a receiver is hence different than that being 
sent by a transmitter. (See Figure 3) 
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Figure 3 Frequency shift of an ultrasonic beam as a rotating eddy passes. 
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The four probes along with the mechanism that holds them on the pipe is called the transducer, the 
distance between Cross-Section A and Cross-Section B is called the transducer spacing. The cross-
section of the pipe located at the midpoint between Cross-Section A and Cross-Section B is referred to 
as the cross-section at which the meter is installed. 
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Figure 3 Frequency shift of an ultrasonic beam as a rotating eddy passes.
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When eddies passing though the pipe pass through both ultrasonic beams, both beams will be altered in 
frequency nearly identically. The reason the two beams will not be altered identically is that eddies can 
deform while between the two beams [6]. 

2.1 Cross Correlation Function 

Let the signal received by Receiver A be called x'(t), and the signal received by Receiver B be called 
y'(t). These received signals are sent to the SCU and demodulated to remove carrier frequencies, 
producing demodulated signals x(t) and y(t) respectively. The two demodulated signals will be nearly 
identical, except for a shift in time. Specifically, y(t) will be delayed in time by the amount of time it 
took the frequency altering eddies to move from Cross-Section A to Cross-Section B. This amount of 
time is called the time delay, and is usually represented by T. 

Time delay T is calculated as the position of the maximum of the cross correlation function R„),(x), 
defined by Equation (1). 

T 
1 Tr 

R xy = — .1 x(t)y(t-q)dt (1) 

Rxy is effectively a measure of the similarity between x(t) and y(t) when y(t) is shifted in time by a 
value of . Consider the square of the difference between x(t) and y(t-F). The average of the square of 
the difference between x(t) and y(t-F) over a specified time interval T will be a measure of the 
similarity between these two signals. 

T 1 T 
T 

1—f (x(t) — y(t -q) )2 dt = f (X2 ± y 2 )dt — 2 i  f x(t)y(t-q)dt 
T 0 T 0 T 0

(2) 

The first term on the right side of (2) is positive, and virtually independent of when is much less 
than T, as it usually is. The minimum of the integral on the left side then corresponds to the maximum 
of the last term on the right side, which corresponds to the maximum of the cross correlation function 
defined by (1). 

The location of the global maximum of Rxy is the time is takes turbulent eddies to pass the distance of 
the transducer spacing at the location of the pipe where the transducer is set up. As mentioned above, it 
is called the time delay. From the time delay, a mass flow rate is calculated by the formula 

Q = Li prrr2
T (3) 

Where d is the transducer spacing, T is the time delay, p is the fluid density, and r is the pipe inner 
radius. 

With the current level of cross correlation flow measurement technology, it is possible, under proper 
conditions, to measure flow with an accuracy of 0.5%. It is unclear though, when such proper 
conditions exist. 

When eddies passing though the pipe pass through both ultrasonic beams, both beams will be altered in 
frequency nearly identically. The reason the two beams will not be altered identically is that eddies can 
deform while between the two beams [6].

2.1 Cross Correlation Function

Let the signal received by Receiver A be called x'(t), and the signal received by Receiver B be called 
y'(t). These received signals are sent to the SCU and demodulated to remove carrier frequencies, 
producing demodulated signals x(t) and y(t) respectively. The two demodulated signals will be nearly 
identical, except for a shift in time. Specifically, y(t) will be delayed in time by  the amount of time it 
took the frequency altering eddies to move from Cross-Section A to Cross-Section B. This amount of 
time is called the time delay, and is usually represented by τ. 

Time delay τ is calculated as the position of the maximum of the cross correlation function Rxy(x), 
defined by Equation (1).

Rxy =
1
T∫0

T

x t y  tdt      (1)

Rxy is effectively a measure of the similarity between x(t) and y(t) when y(t) is shifted in time by a 
value of ξ. Consider the square of the difference between x(t) and y(t+ξ). The average of the square of 
the difference between x(t) and y(t+ξ) over a specified time interval T will be a measure of the 
similarity between these two signals.

1
T∫0

T

 x  t  − y t 2 dt = 1
T∫0

T

x2  y2dt − 2 1
T∫0

T

x t y tdt      (2)

The first term on the right side of (2) is positive, and virtually independent of ξ when ξ is much less 
than T, as it usually is. The minimum of the integral on the left side then corresponds to the maximum 
of the last term on the right side, which corresponds to the maximum of the cross correlation function 
defined by (1).

The location of the global maximum of Rxy is the time is takes turbulent eddies to pass the distance of 
the transducer spacing at the location of the pipe where the transducer is set up. As mentioned above, it 
is called the time delay. From the time delay, a mass flow rate is calculated by the formula

Q = d
  r2      (3)

Where d is the transducer spacing, τ is the time delay, ρ is the fluid density, and r is the pipe inner 
radius.

With the current level of cross correlation flow measurement technology, it is possible, under proper 
conditions, to measure flow with an accuracy of 0.5%. It is unclear though, when such proper 
conditions exist.
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3. Theoretical Analysis 

The demodulated signal derived from a received signal can be represented as 

R 
cp(x,t) = 1.2 f v(x,y,t)dy (4) 

c _R 

where f is the carrier frequency, c is the speed of sound in the fluid, R is the pipe radius, and v is the y-
component of turbulent velocity fluctuations [3]. Here, the x-direction is defined as the direction of the 
flow, and the y-direction is the direction of the ultrasonic beam. Integration is performed along the path 
of the beam from the transmitter to the receiver. The result of integration is a function of position x and 
time t. 

3.1 Curl Transport 

Since the cross correlation flow meter measures the transportation of turbulent structures, its 
measurements are more related to the curl field than the velocity field. A Mathematical connection 
between curl transport and fluid transport will now be demonstrated using the Navier-Stokes Equations. 

The Navier-Stokes equations for the transport of velocity of a fluid are: 

dii —  
at 1+ (u•V)u = —Vp + vV2 u (5) 

[7]. By taking the curl of every term in the Navier-Stokes Equations, one obtains the equations for the 
transport of the curl of a fluid: 

d eo 
+ •V)th — (th•V) = v V 2 , = V x 

dt 

The above equation, (6), may be written in index summation notation as 

d co • d d d co; 

dt 
+ co. coi dx ui = v 

dx 

A two dimensional approximation will now be considered, where 

= ( u(x,y,t) , v(x,y,t), 0) , 
(7) = v  x = ( 0 , 0 dv du ) 

dx dy 

Since the curl has only a z-component, we will define 

c7o = ( 0 , 0 ,w) 

(6) 

(7) 

(8) 

(9) 

3. Theoretical Analysis

The demodulated signal derived from a received signal can be represented as

x , t  = f
c2∫

-R

R

v x , y , t dy      (4)
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measurements are more related to the curl field than the velocity field. A Mathematical connection 
between curl transport and fluid transport will now be demonstrated using the Navier-Stokes Equations. 

The Navier-Stokes equations for the transport of velocity of a fluid are:

d u
dt

 u⋅∇u = 1
 ∇ p  ∇2u      (5)

[7]. By taking the curl of every term in the Navier-Stokes Equations, one obtains the equations for the 
transport of the curl of a fluid:

d 
dt

 u⋅∇  −  ⋅∇u = ∇ 2  ,  = ∇×u      (6)

The above equation, (6), may be written in index summation notation as

d j

dt
 u i

d
dxi

j − i
d

dx i
u j = 

d j

dxi dx i
     (7)

A two dimensional approximation will now be considered, where 

u x , y , t  =  u x , y , t  , v x , y , t  , 0  ,  = ∇×u =  0 , 0 , dv
dx

− du
dy

  (8)

Since the curl has only a z-component, we will define 

 =  0 , 0 ,        (9)
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With the approximations made above, and setting the viscosity term equal to zero because it is very 
small, the curl of the Navier-Stokes equations becomes 

d co 
+u —

dco 
+ v—dco =0at dx dy 

3.2 Deriving A Velocity Field From A Known Curl Field 

(10) 

The next stage in analysis is deriving the velocity field from a known curl field. When particular 
criteria are met, it is possible to determine a velocity field from a given curl field by the following 
formula [8]. 

ii=f f f  ebx(x—,y—ri,z— C)
d 0 ri c1C ((x  — )2 + ( y  _ n )2 ± ( z  — 62 )3/2 

The formula (11) gives the velocity as a function of coordinates x, y, and z. w is a function of 
coordinates , ri, and S. Integration is performed over these coordinates, summing the influence of the 
curl field at every location. 

A two dimensional approximation would set 

Co = (0, 0, WO (12) 

By substituting (12) into (11), considering only the y-component of the velocity since that is the 
component the demodulated signal is dependent on, and integrating over g, one obtains the formula 

v 
=2 f f  c°c(x—)  ri „ .1

m (x_v+(y—ri)2 ....su

for determining the y-component of a velocity field, v, corresponding to the curl field co; . 

(13) 

Since integration is performed over the entire domain, a curl field must be assigned over the entire 
domain, that would simulate the conditions of pipe flow. Since the integrated term is inverse 
proportional to the square of the distance between the location of the contributing curl and the location 
at which one would like to know the velocity, it may be the case that at sufficient enough a distance, the 
value of curl will be insignificant, and one may assign a curl value of zero. It can be demonstrated that 
a curl field simulating conditions of pipe flow can be assigned such that such a sufficient distance 
exists, and the contribution of curl from non-turbulent aspects of the velocity field are canceled out 
during integration. The details of how such a curl field can be assigned is not covered in this report. 

Below the integral in (4) is given. 

R 

f v(x,y,t) dy 
-R 

(14) 

With the approximations made above, and setting the viscosity term equal to zero because it is very 
small, the curl of the Navier-Stokes equations becomes

d
dt

 u d
dx

 v d
dy

= 0     (10)

3.2 Deriving A Velocity Field From A Known Curl Field

The next stage in analysis is deriving the velocity field from a known curl field. When particular 
criteria are met, it is possible to determine a velocity field from a given curl field by the following 
formula [8].

u =∫∫∫  ×x− , y− , z−
x−2y−2z−23 /2

d d d     (11) 

The formula (11) gives the velocity as a function of coordinates x, y, and z. ω is a function of 
coordinates ξ, η, and ς. Integration is performed over these coordinates, summing the influence of the 
curl field at every location. 

A two dimensional approximation would set

 = 0, 0,      (12)

By substituting (12) into (11), considering only the y-component of the velocity since that is the 
component the demodulated signal is dependent on, and integrating over ς, one obtains the formula

v = 2∫∫ x−
x−2y−2 d d       (13)

for determining the y-component of a velocity field, v, corresponding to the curl field ως .

Since integration is performed over the entire domain, a curl field must be assigned over the entire 
domain, that would simulate the conditions of pipe flow. Since the integrated term is inverse 
proportional to the square of the distance between the location of the contributing curl and the location 
at which one would like to know the velocity, it may be the case that at sufficient enough a distance, the 
value of curl will be insignificant, and one may assign a curl value of zero. It can be demonstrated that 
a curl field simulating conditions of pipe flow can be assigned such that such a sufficient distance 
exists, and the contribution of curl from non-turbulent aspects of the velocity field are canceled out 
during integration. The details of how such a curl field can be assigned is not covered in this report.
 
Below the integral in (4) is given.

∫
-R

R

v x ,y , t dy      (14)
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-R 

By defining co in a way that meets the criteria described in the previous paragraph, the v in (14) is 
equal to the v in (4). By then substituting (13) into (14) and integrating over y, one obtains the formula 

R 

f v(x,y)dy = 2f f (Loan-1(R-7  )±tan_i ( R+ri ))d„ ri
x x—

(15) 

The factor that co is multiplied by in (15) is simply the angle a in Figure 10, with a positive sign for 
less than x, and a negative sign for greater than x, where x is the x-coordinate of the location of the 
beam, and is the x-coordinate of the location of the contributing curl source (See figure 10). 

R 

X 

0 
( ,r) 

Figure 10 Angle formed by connecting curl source with ends of ultrasonic beam. 

In polar coordinates, the formula for a is 

a (r,O, x) = tan-1( 
R—rsin(0) ) ± tan_1( R+rsin(0) 
x—rcos(0) x—rcos(0) ) 

For the polar coordinate equivalent to Figure 10, see figure 11. 

(r, 0) 

Figure 11 Angle a in polar coordinates. 

(16) 

For any given r value, the absolute value of a is largest for values of 0 that are integer multiples of it. 
For such values of 0, it can be shown with limit analysis that the absolute value of a tends to zero as 
2R/r. For other values of 0, a tends to zero even faster. 

By defining ως in a way that meets the criteria described in the previous paragraph, the v in (14) is 
equal to the v in (4). By then substituting (13) into (14) and integrating over y, one obtains the formula

∫
−R

R

v x , y dy = 2∫∫ tan−1 R−
x−

tan−1 R
x−

d d     (15)

The factor that ως is multiplied by in (15) is simply the angle α in Figure 10, with a positive sign for ξ 
less than x, and a negative sign for ξ greater than x, where x is the x-coordinate of the location of the 
beam, and ξ is the x-coordinate of the location of the contributing curl source (See figure 10).

Figure 10 Angle formed by connecting curl source with ends of ultrasonic beam.

In polar coordinates, the formula for α is
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R−r sin 
x−r cos   tan−1

Rr sin 
x−r cos       (16)

For the polar coordinate equivalent to Figure 10, see figure 11.

Figure 11 Angle α in polar coordinates.

For any given r value, the absolute value of α is largest for values of θ that are integer multiples of π. 
For such values of θ, it can be shown with limit analysis that the absolute value of α tends to zero as 
2R/r. For other values of θ, α tends to zero even faster.

-R

R

r ,

X

α

θ

r

-R

R

 ,

X

α

31st Annual Conference of the Canadian Nuclear Society 
34th CNS/CNA Student Conference

May 24 - 27, 2010 
Hilton Montreal Bonaventure, Montreal, Quebec



31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010 
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec 

To demonstrate that the integration on the left side of (15) has a solution, we will consider the integral 

dr (17) 

It is obvious that (15) has a solution if and only if (17) has a solution. If co; is a constant, (15) is 
undefined. But, the nature of coc is that it is not a constant. Recall that coc is assigned such that non-
turbulent aspects of the velocity field are canceled out during integration. The integral of coc will only 
be effected by random turbulent perturbations. Hence, integrating co; from 0 to a value a should give a 
value of the same order of magnitude as the value obtained by integrating co; from 0 to a value b, for all 
a and b. Hence, the term under the integral in (15) tends to zero an order of magnitude faster than 1/r, 
and hence, (15), and (17), are defined. By substituting (15) into (4), the formula for the demodulated 
signal, derived from fluid dynamics theory, is 

(x , t) = 2f 
f 

C 0 

IT 
2 

f co(r,O,t)ot(r,0,x)dOdr 
IT 
2 

3.4 Demodulated Signal Transport 

(18) 

By changing the names of some variables, the formula for the demodulated signal may be rewritten as 

4(x0,t) 2f f f ot(xo,x,y)co(x,y,t)clxdy (19) 

where integration is performed over the entire domain. This form of the demodulated signal will be 
used for the remainder of this report. 

By multiplying (10) by a, 2f, and 1/c^2, integrating over x and y, and performing Taylor series 
approximations, one obtains the formula 

dch(xo,t) dcgxo,t) + U , + gkxo,t) = 0 
dt axo 

(20) 

where U is the cross-section average flow velocity, and g is a function related to curl transport and 
depends on both axial and radial components of the velocity. Conducting farther Taylor series 
approximations, one may obtain the formula 

(ba))  (b—aU) g(xo ' t) cp(b,t) = cp(a, t 

where a and b are the locations of cross-sections A and B respectfully. 

(21) 

If g would equal zero, the demodulated signal would move along a pipe with velocity U without 
changing its state, and the velocity measured by the cross correlation flow meter would always be equal 
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x , t  = 2f
c2 ∫

0

∞

∫
−

2


2

 r , , t r , , x d dr      (18) 

3.4 Demodulated Signal Transport

By changing the names of some variables, the formula for the demodulated signal may be rewritten as

x0, t 
2f
c2∫∫ x0 , x ,y x , y , t dx dy    (19)

where integration is performed over the entire domain. This form of the demodulated signal will be 
used for the remainder of this report. 

By multiplying (10) by α, 2f, and 1/c^2, integrating over x and y, and performing Taylor series 
approximations, one obtains the formula

dx0 , t 
dt

 U
dx0 , t

dx0
 g x0, t  = 0    (20)

where U is the cross-section average flow velocity, and g is a function related to curl transport and 
depends on both axial and radial components of the velocity. Conducting farther Taylor series 
approximations, one may obtain the formula

b , t  = a , t−b−a 
U  −

b−a 
U g x0 , t     (21)

where a and b are the locations of cross-sections A and B respectfully.

If g would equal zero, the demodulated signal would move along a pipe with velocity U without 
changing its state, and the velocity measured by the cross correlation flow meter would always be equal 
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to U. The right most term in (21) is responsible for the deviation of the measured velocity from U. This 
term is proportional to the transducer spacing (b-a), and is larger for larger values of g. From these 
theoretical results, three predictions may be made: 

1 — Larger values of g coincide with larger deviations of measured velocity from U. 

2 — Larger values of g coincide with larger dependence of measured velocity on transducer spacing. 

3 — Since U is effectively a flat approximation of the flow velocity profile, where the axial component 
of the velocity is predominant, g should be smaller in situations where the flow velocity profile is 
flatter, and hence, deviation of the measured velocity from U should grow with non-flatness of the flow 
velocity profile. 

4. Experimental Results 

Tests were conducted on the AMAG flow loop, measuring flow at 8 locations along a straight pipe run 
downstream of a 90-degree elbow, with three different transducer spacings at each location . The 8 
locations along the pipe were spread between 6 and 50 pipe diameters from the upstream elbow, as 
shown in figure 12. 

Pipe 

 Test Section  

Figure 12 Piping configuration for test. 

Flow 

Ir 

The actual cross-section average flow velocity for these tests was calculated from previously developed 
methods [3]. For each location along the pipe, three values for measured velocity were obtained, one 
for each transducer spacing. The average of these three measured velocity values was taken and will 
hence fourth be referred to as average measured velocity. The three measured velocity values were also 
plotted against transducer spacing, and a linear regression was made. The magnitude of the slope of the 
linear regression, hence fourth referred to as slope, is an indicator of dependence of measured velocity 
on transducer spacing. 

The graph in figure 13 plots the normalized difference between average measured velocity and U, 
against the slope, for each of the 8 locations along the pipe. Each point on the plot is generated by data 
from one of the locations along the pipe where measurements were conducted. The normalized 
difference between the average measured velocity and U is hence fourth referred to as deviation from 
U. If the first two predictions are true, experimental results should show that deviation from U 
increases as slope increases. This plot clearly illustrates that this is in fact the case. 
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Figure 13 Relation between deviation of average measured velocity from U, and dependence of 
measured velocity on transducer spacing. 

5. Computational Fluid Dynamics 

Computational simulations of the AMAG flow loop were conducted. The flow velocity profile was 
calculated at 6 locations along the section of the pipe that flow measurements were performed at during 
experimental tests. For each of these six locations, a measure of non-flatness of the flow velocity 
profile was determined as follows: The velocity values close to the pipe wall where the velocity goes to 
zero were discarded. The mean value of the remaining velocity values was calculated, the deviation of 
remaining velocity values from the mean was determined, and the root mean square of these deviations 
was calculated. This fmal value, the root mean square of the deviations, will hence fourth be referred to 
as non-flatness. 

According to the third prediction, where the axial component of velocity is predominant, as non-
flatness of the flow velocity profile increases, the deviation from U should also increase. The graph in 
figure 14 plots the deviation of the average measured velocity from U against the non-flatness of the 
flow velocity profile. Each point on the plot is generated by data from one of the locations along the 
pipe where the flow velocity profile was calculated. With the exception of one point, the results show a 
clear linear relation confirming the third prediction. 
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flow velocity profile. 
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The point that is the exception, the third point from the left, is generated by data from 6 diameters from 
the upstream elbow. This is expected, because close to the upstream elbow, the radial component of the 
velocity is comparable to the axial component, and hence, the axial component is not predominant, and 
the necessary conditions for the third prediction are not present. 

6. Conclusion 

Qualitative results predicted by the developing theory have been confirmed with both experimental 
results and computational fluid simulation. Farther development of the theory would involve moving 
beyond the two dimensional approximation, and making quantitative, as well as qualitative, predictions 
to test against experimental and computationally simulated results. 
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