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Abstract 

The move towards probabilistic strategies and reliance on best estimate codes for 
thermalhydraulic (TH) analysis increases the importance of proper sensitivity and uncertainty 
analysis. Sensitivities can be determined using a direct analytical approach through the use of 
partial derivatives. Despite the high level of upfront effort required, this method, once 
accomplished, is applicable to almost any scenario modeled. The sensitivity system can be used 
separately to generate information without requiring full TH code runs. The design, methodology 
and application of an automated FORTRAN script that can edit existing FORTRAN coded TH 
simulation source to include sensitivity calculations are described herein. 

1. Introduction 

The use of Best Estimate and probabilistic methods is increasing in Nuclear Engineering and are 
starting to overtake the former conservative analysis methods as the tools of choice in safety 
analysis. These emerging methods, which strive for a more accurate representation of the real 
system, require the incorporation of detailed uncertainty quantification and sensitivity analysis. 
A proper evaluation of the sensitivities provides information on the inner workings of the system 
that can be utilized to understand the propagation of input uncertainties through the code. In 
addition, detailed sensitivity analysis provides ranking information to determine the most 
influential input parameters on the specific output responses. 

Primarily, sensitivity analysis is performed using perturbation methods which treat the code as a 
closed system and measure the change in outputs when an input parameter is perturbed. This 
type of analysis is computationally intensive as multiple full code runs must be made for each 
case and must be repeated for each scenario modeled. In addition, this method avoids any 
investigation of the code structure itself only comparing the inputs and outputs. 

Sensitivity analysis can also be performed using a direct method which explores the code 
structure and embeds sensitivity calculations within the code so the sensitivity case can be 
computed simultaneously. The equations and numerical methodology of the model are 
evaluated analytically in order to produce the sensitivity of the model to variations of the input 
parameters. This method relies on producing the partial derivatives of the model equations for 
each parameter that can affect the outcome. This method of parallel analysis does require 
detailed knowledge of the simulation program including all model equations and correlations 
used down to their base levels. Despite this, once the partial derivations are determined and 
integrated into the code, the derivatives for each input about any reference value can be 
computed. This database of partial derivatives can then be utilized separately to perform 
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sensitivity calculations without running the full code. The advantage is that the analytical 
process of computing partial derivatives need only be done once to assess the relations within the 
code for any possible transient. In addition, the determination of these partial derivatives 
provides valuable insight as to which parameters are most important in their affects on the code 
output. This information will reduce the experience needed and the engineering judgement 
requirements necessary when establishing which parameters are most important for a specific 
scenario. By taking the partial derivatives in parallel, a complete set of sensitivities for the full 
transient can be recorded. 

The sensitivity and resulting uncertainty analysis can maintain either a local or global focus. 
Local analysis examines the interrelations in parameters at a specific local point within the 
simulation. Therefore, multiple local analyses can be performed to track the sensitivities 
throughout the simulation both temporally and spatially. Globally focused sensitivity seeks to 
determine the critical points of the system such as maxima, minima, bifurcations or saddle 
points. 

If the direct sensitivity analysis procedures are developed in parallel with the construction of the 
modeling code, the knowledge of the modeling strategies is readily available and the process of 
integrating sensitivity computations into the modelling code requires minor additional efforts. 
However, if the modeling code has already been fully developed and there is a desire to modify it 
to insert direct sensitivity analysis extensive and detailed efforts are required. The modeling 
code must be fully investigated and dissected to develop an exact understanding as to how the 
simulation actually functions. The model equations must be explored and traced from high level 
equations right down to the dependence on the base variables of the system and the input 
parameters provided by the user. Once the code has been broken down the partial derivatives 
can be computed from the base level and carried back up the line to the top. When dealing with 
complex simulation codes such as those used in nuclear thermalhydraulic analyses this process 
requires considerable time an experience. This is due to the many interacting model equations 
and extensive lists of parameters utilized within the code. 

2. The design of an automated direct analytical sensitivity system 

A standard thermal hydraulics code package makes use of multiple interconnected subroutines to 
calculate the state variables that are simulated by the code. The state variable responses of the 
code are affected by the parameters present within the calculation. For example, the state 
variable of tank pressure in a simple gas blowdown experiment is dependent upon a large 
number of parameters such as break opening, tank dimensions, external environment conditions, 
flow characteristics and various properties of the subject gas. The calculation of pressure is 
made using components such as mass flow rate, heat transfer coefficients, volume and other 
intermediary factors that are computed from the system parameters. TH code packages utilize 
multi-level calculations where each of the constructs is calculated in a separate subroutine 
leading up to the main level calculation for the state variable. An example of this multi-level 
system is seen in Figure 1. 
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Figure 1: Example Calculation Flowchart for Simple Thermalhydraulic System 

The multi-level nature is evident from the illustration in Figure 1. In order to produce a 
sensitivity analysis based on the partial derivatives all the parameters must be related to the 
response variable. Since each block of the multi-level system is calculated in a separate 
subroutine (general practice in TH codes) there are two avenues of approach. First the 
derivatives of the response for each subroutine can be calculated and then the derivative of the 
main response for each of the individual parameters can be calculated by way of the chain rule as 
shown in Equation 1. 

af = af  . ag
as ag as (1) 

Second the individual parameters of the lower level subroutines can be upgraded sequentially to 
the main subroutine adding them to the subroutine arguments hence allowing a computation of 

of 
the derivative — directly. The derivatives themselves can be determined by way of an 

as 
analytical formula, either coded manually or determined by an external script or by the use of a 
numerical finite difference derivative which measures the change in output based on the change 
in input. A staged analytical system is best used with the first method computing the derivatives 
stage by stage and producing the top level state variable derivative using the chain rule. The 
parameter upgrade method is well suited to an automated numerical approach since the 
parameters in questions are input arguments to the multi-level subroutine calculation and the 
state variable responses are outputs. Therefore, a numerical finite difference derivative can be 
easily determined using Equation 2. 

of  = f(citi +ea,)- f (ai ) 

ea, 
(2) 

The factors is very small and is chosen to produce an accurate and stable derivative solution in 
general a suitable value is approximately 1000 times the modelling code accuracy. Either 
method, the chain rule based analytical or the parameter upgrade numerical derivative can be 

3  3 

 
 

Figure 1: Example Calculation Flowchart for Simple Thermalhydraulic System 
 
The multi-level nature is evident from the illustration in Figure 1.  In order to produce a 
sensitivity analysis based on the partial derivatives all the parameters must be related to the 
response variable.  Since each block of the multi-level system is calculated in a separate 
subroutine (general practice in TH codes) there are two avenues of approach.  First the 
derivatives of the response for each subroutine can be calculated and then the derivative of the 
main response for each of the individual parameters can be calculated by way of the chain rule as 
shown in Equation 1. 
 

a
g

g
f

a
f

∂
∂

•
∂
∂

=
∂
∂    (1) 

 
Second the individual parameters of the lower level subroutines can be upgraded sequentially to 
the main subroutine adding them to the subroutine arguments hence allowing a computation of 

the derivative 
a
f
∂
∂  directly.  The derivatives themselves can be determined by way of an 

analytical formula, either coded manually or determined by an external script or by the use of a 
numerical finite difference derivative which measures the change in output based on the change 
in input.  A staged analytical system is best used with the first method computing the derivatives 
stage by stage and producing the top level state variable derivative using the chain rule.  The 
parameter upgrade method is well suited to an automated numerical approach since the 
parameters in questions are input arguments to the multi-level subroutine calculation and the 
state variable responses are outputs.  Therefore, a numerical finite difference derivative can be 
easily determined using Equation 2. 
 

i

iii

i

fff
εα

αεαα
α

)()( −+
=

∂
∂   (2) 

 
The factor ε is very small and is chosen to produce an accurate and stable derivative solution in 
general a suitable value is approximately 1000 times the modelling code accuracy.  Either 
method, the chain rule based analytical or the parameter upgrade numerical derivative can be 

Pressure 

Mass 
Flow 

HTC T 

Nusselt # k ... 

Prandtl # Grashof # 

Liquid and Gas Properties 
(k, Cp, μ, β, ρ) 

System 
Dimensions 

... 

BC & IC 

... 

Reynolds # 

31st Annual Conference of the Canadian Nuclear Society 
34th CNS/CNA Student Conference

May 24 - 27, 2010 
Hilton Montreal Bonaventure, Montreal, Quebec



31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010 
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec 

utilized to produce the necessary partial derivatives that will be required by the sensitivity space 
of the particular system. 

Manual coding using analytical partial derivatives has been performed on simple TH code 
packages. An example, is the application by Petruzzi of direct analytical sensitivity analysis 
through partial derivatives to a simple nitrogen gas blow down system [1]. The system consisted 
of a tank of pressurized nitrogen depressurized into a stagnant air environment at atmospheric 
pressure. The main properties investigated were the nitrogen pressure transient, the nitrogen 
temperature and the heat transfer through the tank wall during the blow down. The blow down 
system equations were explored and converted to discrete form in order to apply a numerical 
solution code to the problem. The discretized equations were then broken down to the state 
variables of the system. Once the base level was reached the partial derivatives were taken back 
up the line until the main model equations were reached. 

Automated codes that read in source subroutines and produce derivatives are in existence such as 
the ADIFOR code which given a single subroutine and its inputs and outputs will produce the 
associated analytical partial derivatives [2]. The code would be applied to each subroutine and 
then the chain rule used to relate the specific parameters to the state variables at the top level of 
the calculation. 

Using the parameter upgrade and numerical derivative approach an automated code can be 
created that reads in the full text (or selected portions) of the source code and upgrades the 
desired parameters (as specified by the user) until the main calculation level is reached. The 
upgraded parameters are added to the arguments of the subroutines and their definitions are 
passed up the line. Once the upgrade is complete, the upper subroutine that outputs the state 
variable has inputs that contain all the pertinent parameters that are needed for the sensitivity 
space. The code can then call this subroutine multiple times to calculate the numerical finite 
difference derivatives for each parameter. 

The automated code using parameter upgrading and numerical finite difference derivatives was 
created using FORTRAN for use on other FORTRAN coded scripts due to this code's wide 
spread use in the area of scientific modeling and especially nuclear engineering. The full code 
package consists of a pre-reading parameter upgrade program that is run multiple times and is 
followed by a derivative subroutine generator that produces the derivative subroutines. Once the 
partial derivatives are produced they can be compiled into a sensitivity space for the system. 

The sensitivity system is created based on the DDDSM method designed by Petruzzi, [1], and 
the matrix calculation method is detailed for a two step semi-implicit system in Equations 3 and 
4 with s being the set of state variables and a being the set of parameters. A further code that is 
run after the parameter upgrade and derivative generation codes is used to convert the partial 
derivative values into the associated sensitivity space as per Equations 3 and 4. 
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This code identifies the state variables within the calculation and using the two time step form 
seen in Equation 5 produces the matrices of the partial derivatives based on the b functions. 

Pn+1 = Pn + 0 
(5) 

By utilizing these three scripts in sequence and applying them to a FORTRAN coded TH 
simulation the user can produce a new simulation code that has imbedded sensitivity calculations 
than can be computed concurrently during the simulation execution and provide sensitivity 
values at each time step. The following sections describe the AutoSense code package and its 
associated components, SUPRDR and SENSOR. 

3. Description of the SUPRDR and SENSOR codes 

The AutoSense FORTRAN scripts used to generate new versions of FORTRAN coded TH 
models that include sensitivities are three fold. The first script, SUPRDR contains both the 
parameter upgrading module, PRERDR, and the derivative generation module, RDR. The 
second script is SENSOR, which contains the sensitivity conversion module. The scripts are 
written in FORTRAN-95 and are designed to read and interpret script written in FORTRAN-77 
or FORTRAN-95. The codes and their pertinent subroutines are described herein. 

3.1 SUPRDR CODE 

The SUPRDR code is made up of two parts PRERDR and RDR which respectively upgrade any 
selected parameters to the top level and produce the derivative generation subroutines for each 
calculation subroutine. The parameters and responses included in the upgrading and derivative 
work are restricted to floating point variables and the partial derivatives are computed using a 
scaled finite difference method as per Equation 2. A flowchart of the SUPRDR code is shown in 
Figure 2. 
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Figure 2: Flowchart for the SUPRDR Code 

The parameter upgrade code, PRERDR, is designed to take locally defined variables from a low 
level subroutine and upgrade them to the top of the calculation. This allows the selected 
parameter to be directly related to the state variable output response being calculated. The 
upgrading is done iteratively one subroutine level up at a time and the process is complete once 
the parameter has reached the main program level. The PRERDR module is made up of the main 
program which is used to modify and assemble the edited code and PRERDMAN which is the 
subroutine that reads the individual source subroutine codes, determines the parameters to be 
upgraded, copies the necessary declaration lines and assignment statements to be inserted in the 
next level up and compiles the additional variables to be added to the subroutine arguments. In 
the process, PRERDMAN calls common subroutines RESEARCH, ARAY and AOUT, which 
are described later. The iterative process runs PRERDR multiple times and at each stage 
produces a new source file. Once the upgrade cycle is complete the COMPFLAG variable is set 
to 1 meaning that there are no more parameters left to be upgraded. The parameters to be 
upgraded are identified automatically as any real variable that has an assign ea = x') statement 
that is not already an output of the subroutine. The user can avoid upgrading a certain parameter 
if desired via a 
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Figure 3: Flowchart of the PRERDR module 
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Once the PRERDR module has completed its cycle and COMFLAG = 1, the RDR module is 
executed on the most recently generated file from PRERDR. The RDR subroutine is responsible 
for collating and reassembling the input source to integrate the newly created derivative 
generating subroutines. The subroutine RDMAN is called from RDR and constructs the 
derivative computation subroutines. RDMAN calls the common subroutines AOUT, ARAY and 
RESEARCH. 

The derivative subroutines are created by first determining all the inputs and outputs of the 
original subroutine and then computing numerical partial derivatives for all floating point values 
(as per Equation 2). The inputs and outputs are determined by creating a list of the arguments 
and common block variables (using the RESEARCH subroutine) and then comparing them to a 
list of all the real variables generated from RESEARCH the real variables that are contained 
within the arguments and common blocks are considered the "variables under question" as they 
are potential inputs or outputs. 

The outputs are determined using the AOUT subroutine which searches for assignment 
statements in the code and compares the assigned variables to the variables under question. 
Therefore, if a variable is changed within the subroutine it is considered an output. All variables 
under question, including the outputs themselves are considered inputs. 

The partial derivatives are produced by calling the original subroutine with a modified input 
value and comparing the change in the output value. The partial derivatives are created for all 
inputs with respect to all the inputs. The derivative values are collected into an array which holds 
the values as the computation takes place and outputs to the screen or a file each time the 
derivative subroutine is called. The newly created derivative subroutine has a unique structure 
which includes the loading of all original variable values into control arrays, perturbing each 
single input for a given output, measuring the change and then resetting the input back to its 
original value. The derivatives are stored in an array which is added to the arguments and is 
available to the calling subroutine. At the end of the derivative subroutine the derivatives are 
outputted to a file or the screen and the original subroutine is called one last time with all the 
inputs at their control value to ensure the normal simulation calculation is not affected. 

Once all the derivative subroutines are created the RDR module assembles the code back 
together and places calls to the derivative subroutines directly after any call to the associated 
original subroutine. Since multi-layered subroutines that are called from these derivative 
subroutines may also have derivative subroutines of their own, these call statements are placed 
within an "if' condition, which is tied to a flag variable. If the call to a subroutine is made 
within a derivative subroutine the flag is set to zero and the derivative subroutine calls present 
will not be executed. However, if the call is part of the normal execution of the code, the flag is 
set equal to 1 and the derivative subroutine call will be made. The RDR module also adds on the 
flag variable to the arguments of the original subroutines to allow this functionality. With the 
calls inserted at the proper places, the derivative subroutines are appended to the end of the code 
and the newly assembled derivative script is outputted to a file. The flowchart for the RDR 
module is provided in Figure 4. 
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There are several common subroutines used within the SUPRDR code, they can be classified 
into three groups: file handling, code interpretation, line reading utilities. The file handling 
subroutines are FLENG, RFILE and FLOUT. FLENG reads the input file and determines its 
length by checking the first characters up until end of file and returns the length. The RFILE 
subroutine uses the length value and reads the input file storing it line by line in the array "Line" 
which is then returned. FLOUT takes in the modified script which is stored in the array "outfile" 
and writes it to a given output filename. The code interpretation subroutines are RESEARCH, 
ARAY and AOUT. The RESEARCH subroutine gathers variables from the original subroutine 
in question collecting the names of all the real variables. In addition, this subroutine collects all 
common variables when the 'keyword' input is selected as "common". The ARAY subroutine 
checks for arrays in the common blocks or arguments and expands them out to individual 
variables so the derivatives can be computed. The AOUT subroutine explores the source 
subroutine and records all the variables that are assigned a value, this list is compared with the 
"variables under question" list and any matches are deemed to be outputs. AOUT calls the 
subroutine ASIZE in order to compute the sizes of any arrays that are encountered in the 
assignment statements. These arrays are then expanded out in the AOUT subroutine. The line 
reading utilities are called multiple times by all other subroutines and are used throughout the 
code, they include LPARSE and LNSEARCH. LPARSE is a simple subroutine that takes in a 
large character variable of comma separated strings and produces and array of strings, which is 
then returned. LNSEARCH is used to search the original FORTRAN script held in the array 
"Line" for specific character strings using a given keyword input and a supplied upper and lower 
bound for the search. It returns the line location of the first incidence of the keyword (incidences 
within commented lines are not included) from the starting line and can function in both forward 
and backward modes based on the upper and lower bound values. 

The SUPRDR code does all the background work necessary for creating a sensitivity space for a 
given problem and the file output is passed on to the SENSOR code to allow for final conversion 
from derivatives to sensitivities. The SENSOR code takes as its input the file outputted at the 
end of the SUPRDR run along with user defined information on the specific state variables in 
question and the locations of the characteristic equations. Many of the common subroutines used 
in SUPRDR are also used in the SENSOR code including FLENG, RFILE, FLOUT, 
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LNSEARCH, LPARSE, RESEARCH, ARAY, and ASIZE. The two codes have been left 
separate to ensure ease of use, to observe if conversions are taking place properly and because of 
the less automated nature of the SENSOR code which requires more user input. The sensitivity 
conversion relates the partial derivatives computed using the newly made derivative subroutines 
to the characteristic equations of the simulation. 

3.2 SENSOR CODE 

The SENSOR code analyzes the top level of the simulation and separates out the variables into 
state variables, parameters and constructs. It then takes the user indicated characteristic 
equations and relates them to the derivative variables created by the derivative subroutines. In 
general the code will recognize a characteristic equation of the form seen in Equation 5 and then 
find a relation between 0 and the derivative variables that are available to produce the list of 0 
derivatives (dO). Once these are determined they are placed into the matrices defined in 
Equations 3 and 4 in order to compute the sensitivity space. The dO lists are split into 3 groups, 
derivatives of state variables at time n, state variables at time n+1 and parameters. For each 
characteristic equation the 3 dO lists are created and assembled into three matrices PhiSVC, 
PhiSVN and PhiPAR that compute the sensitivity space. The SENSOR code inserts the code 
necessary to convert the derivative variables to dO values, assemble the necessary matrices and 
calculate the sensitivity space matrices Ja and Jo. The calculation process uses Equation 6 and 7 
to determine the sensitivity space for the parameters and initial values of the state variables (Ja
and Jo). The two matrices are then outputted at each time step. 

Parameters: (I — Øsrw)(4+') = (I + Osvc)(4)± OpAR (6) 

Initial State Variables: (1.— ØsvN)(C')= (1.+0,s7c)(40) (7) 

The SENSOR code adds the necessary script to perform the conversion to sensitivity space as 
described above and reassembles the code outputting the new file. This is the final step in the 
conversion of the original source code to a modified source that includes a sensitivity space 
calculation. A flow chart of the SENSOR code is provided in Figure 5. 
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4. Application of SUPRDR and SENSOR to simple test simulalions 

The sensitivity conversion software was tested through the application to two problems of 
increasing difficulty. The initial test was an analytical system of two differential equations as 
depicted in Equation 8 with the solution defined in Equation 9. 

=at 
System: 07 

= —T c (8) 
Br 

(t = U = P u,T(t = 0) = To

P = Poe" + at(T0 — c)e" — (ac + b)e" + ac b 
Solution: T = Toe' + c(1.— e- t) (9) 

The program outputs for P, T and the sensitivity profile for the set of parameters (a, b, c) were 
compared to the predicted analytical results with excellent agreement. The analytical and code 
sensitivity comparisons are shown in Figure 6. 
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Figure 6: Comparison of analytical and code results for sensitivity system test 
[(a): Initial Conditions (b, c, d): Parameters] 

The second test of the code was the application to a simple Gas Blowdown simulation coded in 
FORTRAN-95 and defined as per reference 1. The problem simulates the venting of a 
cylindrical tank of Nitrogen into external standard atmospheric conditions. The simulation 
tracks state variables including the pressure and temperature in the tank and the wall temperature 
values of the tank wall at various points within the wall. 
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The nominal blowdown simulation code was then fed into the SUPRDR code pack which 
iterated 6 times upgrading parameters and then ran the derivative generation module. The 
completed derivative output file was then sent to the SENSOR code and was processed to 
produce the sensitivity space code and then outputted. The completed edited code was then 
tested. The sensitivities were calculated at each time concurrently with the running of the code 
and the results were compared with the results data from analytical sensitivity calculations by 
Petruzzi [1]. The auto-sense blowdown code showed good agreement in the sensitivity space for 
all relevant values. The data for both the initial state values and the parameters are in good 
agreement and the code seems to work well, albeit slower than the basic simulation. 

5. Future application to RELAP 5 full system thermalhydraulics code 

As stated earlier, if direct analytical methods are employed in conjunction with the development 
of a system simulation code the extra effort needed is minimal. Unfortunately, the standard 
thermalhydraulics codes used in nuclear analysis were not developed in this manner. Therefore, 
in order to apply direct methods to these codes, efforts must be made to dissect the codes and 
determine the proper way to integrate the necessary components into the code. For complex full 
system codes that are in use today this requires significant effort and skill to properly 
accomplish. Large system thermalhydraulics codes in use in nuclear analysis such as RELAP5, 
CATHARE and CATHENA have very high levels of complexity and must be carefully 
examined in order to breakdown the model equations to the level of state variables and user 
defined input parameters. 

RELAP5, like any other complex full system code, is made up of multiple subroutines designed 
to model various thermalhydraulic phenomenon. The level of complexity present would 
necessitate extensive efforts to fully employ direct methods throughout all parts of the code. 
However, it may be feasible to integrate a direct analytical method into a specific subroutine with 
an acceptable level of effort. This can lead to the development of a defined procedure to employ 
direct analytical analysis which can then be applied to other subroutines relatively quickly and 
easily, building the sensitivity system step by step. 

The SUPRDR and SENSOR code packages are to be applied to RELAP 5. This application is an 
involved and complex undertaking and hence will require much skill and effort over time. The 
first stage is the application of the codes to the choked flow subroutine. The choked flow 
subroutine derives information from the hydrodynamic and heat structure modules of RELAP so 
these must also be assessed in the pursuit of the main goal. 

The AutoSense code package, SUPRDR and SENSOR, are being applied to very small portions 
of the RELAP code. Building on the success with the blowdown simulation the application of 
the sensitivity codes in a limited fashion to the choked flow subroutine, specifically the two 
phase Henry-Fauske model, subroutine gctpm, is being attempted. This study is being performed 
by upgrading a small number of internal parameters in the gctpm subroutine up to the jchoke 
parent subroutine and computing the partial derivatives through a newly created dfgctpm 
subroutine. Preliminary testing with 5 parameters has proved effective in an operational sense. 
Data is required to compare the output to ensure its validity. This effort was made possible by 
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running the SUPRDR code on the jchoke and gctpm subroutines in isolation from the rest of the 
RELAP source and producing modified subroutines and the new dfgctpm subroutine. The next 
step to continue this effort is to upgrade the parameters a few more levels up to the point where 
state variables such as Pressure and internal energy and constructs such as temperature and mass 
flow are calculated. Once this upgrading is achieved the partial derivatives for these responses 
with respect to the parameters can be computed. If this works out the SENSOR code can be 
applied and direct sensitivities can be produced. This effort will serve as a proof of concept and 
can be used to define a detailed procedure for applying the sensitivity calculation package to 
various subroutines in the RELAP5 Mod 3.3 source code. Eventually given enough time and 
effort the sensitivity package can be applied to large portions of the code resulting in a new 
version of RELAP with a detailed sensitivity space that is calculated concurrently with 
simulations and would work for any nodalization design. 

6. Conclusion 

Direct uncertainty and sensitivity analysis is an increasingly vital research area to provide proper 
assessment of probabilistic best estimate codes. Direct methods promote detailed investigation 
of the inner workings of the simulation to produce sensitivity measurements through the use of 
partial derivatives. Despite the skill and effort required to apply direct methods to complex 
simulation codes, the procedure is only required once to cover all scenarios that the code is able 
to simulate greatly reducing the computational efforts necessary. By integrating direct 
sensitivity calculations into the simulation code, consistent analysis is made available to all users 
and a wealth of sensitivity information is provided. 

An automated sensitivity generation code package, AutoSense, has been created that reads in 
FORTRAN coded TH simulations and outputs a modified simulation that includes sensitivity 
space calculations. The package has been successfully applied to a simple gas blowdown 
simulation with positive results. The code is in the process of being applied to portions of the 
RELAP5 Mod 3.3 TH simulation software in the choked flow subroutine. These efforts will be 
used to build a procedure for application of the sensitivity package in RELAP which could 
eventually lead to a new RELAP source that includes detailed sensitivity calculations concurrent 
with the base simulation. 
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eventually lead to a new RELAP source that includes detailed sensitivity calculations concurrent 
with the base simulation. 
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