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ABSTRACT 

This paper presents an extensive study of heat-transfer correlations applicable to supercritical-water flow 
in vertical bare tubes. A comprehensive dataset was collected from 33 papers by 27 authors, including 
more than 125 graphs and wide range of parameters. The parameters range was as follows: pressures 22.5 
— 34.5 MPa, inlet temperatures 85 — 350°C, mass fluxes 250 — 3400 kg/m2s, heat fluxes 75 — 5,400 kW/m2, 
tube heated lengths 0.6 — 27.4 m, and tube inside diameters 2 — 36 mm. 

This combined dataset was then investigated and analyzed by calculating Heat Transfer Coefficients 
(HTCs) and wall temperatures using various correlations and comparing them with the corresponding 
experimental results. Three correlations were used in this comparison: original Bishop et al., Mokry et al. 
(modified Bishop et al.) and Gupta et al. (modified Swenson et al). 

The main objectives of this study were a selection of the best supercritical-water bare-tube correlation 
for HTC calculations in: 1) fuel bundles of SuperCritical Water-cooled Reactors (SCWRs) as a preliminary 
and conservative approach; 2) heat exchangers in case of indirect-cycle SCW Nuclear Power Plants (NPPs); 
and 3) heat exchangers in case of hydrogen co-generation at SCW NPPs from SCW side. 

The comparison showed that in most cases, the Bishop et al. correlation deviates significantly from the 
experimental data within the pseudocritical region and actually, underestimates the temperature in the most 
cases. On the other hand, the Mokry et al. and Gupta et al. correlations showed a relatively better fit within 
the most operating conditions. In general, the Gupta et al. correlation showed slightly better fit with the 
experimental data than the Mokry et al. correlation. 

1. INTRODUCTION 

1.1. SCWR concept 

New Nuclear Power Plants (NPPs) with Generation W water-cooled reactor concepts being developed at 
AECL (Canada) [1] and at IPPE (Russia) [2] have the main design objective of achieving higher thermal 
efficiencies comparable with that of advanced thermal power plants (43 — 50%) [3-5]. The major 
contribution to this thermal-efficiency increase would come from boosting the outlet coolant temperature 
and operating pressure above the critical parameters of water (625°C and 22.1 MPa). 

SuperCritical Water-cooled nuclear Reactors (SCWRs) are high-pressure (-25 MPa) and high-
temperature (outlet temperatures up to 625°C) concepts that will be put into operation within next 15 — 20 
years. 

In this case, the coolant will pass through the pseudocritical point before reaching the outlet of the fuel 
channel. At these extreme conditions, three regimes of forced-convection heat transfer to water might exist. 
These regimes depend on heat flux per mass-flux ratio and are as the following: (1) Normal Heat-Transfer 
(NHT) regime characterized by Heat Transfer Coefficients (HTCs) similar to those of subcritical convective 
heat transfer (usually, this regime occurs outside critical or pseudocritical regions); (2) Deteriorated Heat-
Transfer (DHT) regime with lower values of the HTC and hence, higher values of wall temperature within 
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ABSTRACT 
 

This paper presents an extensive study of heat-transfer correlations applicable to supercritical-water flow 
in vertical bare tubes.  A comprehensive dataset was collected from 33 papers by 27 authors, including 
more than 125 graphs and wide range of parameters.  The parameters range was as follows: pressures 22.5 
− 34.5 MPa, inlet temperatures 85 – 350ºC, mass fluxes 250 – 3400 kg/m2s, heat fluxes 75 – 5,400 kW/m2, 
tube heated lengths 0.6 − 27.4 m, and tube inside diameters 2 – 36 mm. 

This combined dataset was then investigated and analyzed by calculating Heat Transfer Coefficients 
(HTCs) and wall temperatures using various correlations and comparing them with the corresponding 
experimental results.  Three correlations were used in this comparison: original Bishop et al., Mokry et al. 
(modified Bishop et al.) and Gupta et al. (modified Swenson et al). 

The main objectives of this study were a selection of the best supercritical-water bare-tube correlation 
for HTC calculations in: 1) fuel bundles of SuperCritical Water-cooled Reactors (SCWRs) as a preliminary 
and conservative approach; 2) heat exchangers in case of indirect-cycle SCW Nuclear Power Plants (NPPs); 
and 3) heat exchangers in case of hydrogen co-generation at SCW NPPs from SCW side. 

The comparison showed that in most cases, the Bishop et al. correlation deviates significantly from the 
experimental data within the pseudocritical region and actually, underestimates the temperature in the most 
cases.  On the other hand, the Mokry et al. and Gupta et al. correlations showed a relatively better fit within 
the most operating conditions.  In general, the Gupta et al. correlation showed slightly better fit with the 
experimental data than the Mokry et al. correlation. 
 
1.  INTRODUCTION 
 
1.1. SCWR concept 

 
New Nuclear Power Plants (NPPs) with Generation IV water-cooled reactor concepts being developed at 

AECL (Canada) [1] and at IPPE (Russia) [2] have the main design objective of achieving higher thermal 
efficiencies comparable with that of advanced thermal power plants (43 − 50%)  [3−5].  The major 
contribution to this thermal-efficiency increase would come from boosting the outlet coolant temperature 
and operating pressure above the critical parameters of water (625ºC and 22.1 MPa). 

SuperCritical Water-cooled nuclear Reactors (SCWRs) are high-pressure (~25 MPa) and high-
temperature (outlet temperatures up to 625°C) concepts that will be put into operation within next 15 − 20 
years. 

In this case, the coolant will pass through the pseudocritical point before reaching the outlet of the fuel 
channel.  At these extreme conditions, three regimes of forced-convection heat transfer to water might exist.  
These regimes depend on heat flux per mass-flux ratio and are as the following: (1) Normal Heat-Transfer 
(NHT) regime characterized by Heat Transfer Coefficients (HTCs) similar to those of subcritical convective 
heat transfer (usually, this regime occurs outside critical or pseudocritical regions); (2) Deteriorated Heat-
Transfer (DHT) regime with lower values of the HTC and hence, higher values of wall temperature within 

31st Annual Conference of the Canadian Nuclear Society 
34th CNS/CNA Student Conference

May 24 - 27, 2010 
Hilton Montreal Bonaventure, Montreal, Quebec

mailto:Amjad.Farah@yahoo.com�
mailto:Krysten.King@gmail.com�
mailto:Sahil.uoit@gmail.com�
mailto:Sarah_Mokry@hotmail.com�
mailto:Wargha.Peiman@gmail.com�
mailto:Igor.Pioro@uoit.ca�


31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010 
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec 

some part of a flow channel compared to those of the NHT regime; and (3) Improved Heat-Transfer (IHT) 
regime with higher values of the HTC and hence, lower values of wall temperature within some part of a 
flow channel compared to those of the NHT regime. 

Most of the existing heat-transfer correlations are capable of predicting HTCs only at the NHT and IHT 
regimes, but fail to predict HTCs at the DHT regime. Figure 1 shows several heat-transfer correlations for 
vertical bare tubes with upward flow of supercritical water at lower value of mass flux. 
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Figure 1: Temperature and HTC variations along vertical tube (4-m heated length and 10-mm ID): 

Pin = 24.1 MPa, G = 203 kg/m2s, q„,,g = 203 kW/m2, qdht = 92 kW/m2 [6]. 

1.2. SC fluids 

Supercritical fluids have unique properties [7, 8]. It is well established that thermophysical properties 
of any fluid, including water, experience significant changes within critical and pseudocritical regions. 
Figure 2 illustrates these variations for water passing through the pseudocritical point at 25 MPa, the 
proposed operating pressure of SCWRs. The most significant changes in properties occur within ±25°C 
from the pseudocritical temperature (384.9°C). The National Standards Institute of Technology (NIST) 
Reference Fluid Properties (REFPROP) software was used to calculate these thermophysical properties [9]. 
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Figure 2. Selected properties of supercritical water at 
pseudocritical point. 
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Figure 1: Temperature and HTC variations along vertical tube (4-m heated length and 10-mm ID): 
Pin = 24.1 MPa, G = 203 kg/m2s, qavg = 203 kW/m2, qdht = 92 kW/m2 [6]. 
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Beyond the critical point, the fluid becomes a dense gas. Crossing from high-density fluid to low-
density fluid does not involve a distinct phase change. Phenomena such as a dry-out (critical heat flux) are 
therefore not applicable. However, at supercritical conditions, a DHT regime may exist [3]. 

Table 1 lists parameters of current Pressure-Tube (PT) SCWR concepts being developed by AECL 
(Canada) and RDIPE (Russia). 

Table 1. Major parameters of SCW CANDU® and KP-SKD nuclear-reactor concepts [3]. 

Parameters SCW CANDU KP-SKD 
Reactor type PT PT 
Reactor spectrum Thermal Thermal 
Thermal power, MW 2540 1960 
Electric power, MW 1220 850 
Thermal efficiency, % 48 42 
Pressure, MPa 25 25 
Inlet temperature, °C 350 270 

Outlet temperature, °C 625 545 
Flowrate, kg/s 1300 922 
Number of fuel channels 300 653 
Number of fuel elements in bundle 43 18 
Length of bundle string, m 6 
Maximum cladding temperature, °C 850 700 

This paper presents selected results on heat transfer to supercritical water flowing upward in vertical 
bare tubes of various lengths and diameters within a wide range of operating conditions. 

The main objective of this paper was to select the best supercritical-water bare-tube correlation for HTC 
calculations in: 1) fuel bundles of SCWRs as a preliminary and conservative approach; 2) heat exchangers in 
case of indirect-cycle SCW NPPs; and 3) heat exchangers in case of hydrogen co-generation at SCW NPPs 
from SCW side. 

2. Background 

Currently, there is just only one supercritical-water heat-transfer correlation for fuel bundles. This 
correlation was obtained in a 7-helically-finned-element bundle developed by Dyadyakin and Popov (for 
details, see Figure 3) [3]. It seems that this test bundle was intended for application in a transport (mobile) 
nuclear reactor, not in a power reactor (for example, see Figure 4). Moreover, heat-transfer correlations for 
bundles are usually very sensitive to a particular bundle design. Therefore, this correlation cannot be used 
for other bundle geometries. 

To overcome this problem, a wide-range heat-transfer correlation based on bare-tube data can be 
developed as a conservative approach. The conservative approach is based on a fact that HTCs in bare 
tubes are generally lower than those in bundle geometries, where heat transfer is enhanced with appendages 
(endplates, bearing pads, spacers, buttons, etc.). 

A number of empirical generalized correlations, based on experimentally-obtained datasets, have been 
proposed to calculate the HTC in forced convection for various fluids including water at supercritical 
pressures. These bare-tube correlations are available in various literature sources, however, differences in 
HTC values can be up to several hundred percent [3]. 
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Parameters SCW CANDU KP-SKD 
Reactor type PT PT 
Reactor spectrum Thermal Thermal 
Thermal power, MW 2540 1960 
Electric power, MW 1220 850 
Thermal efficiency, % 48 42 
Pressure, MPa 25 25 
Inlet temperature, °C 350 270 
Outlet temperature, °C 625 545 
Flowrate, kg/s 1300 922 
Number of fuel channels 300 653 
Number of fuel elements in bundle 43 18 
Length of bundle string, m 6 – 
Maximum cladding temperature, °C 850 700 
 

This paper presents selected results on heat transfer to supercritical water flowing upward in vertical 
bare tubes of various lengths and diameters within a wide range of operating conditions.  

The main objective of this paper was to select the best supercritical-water bare-tube correlation for HTC 
calculations in: 1) fuel bundles of SCWRs as a preliminary and conservative approach; 2) heat exchangers in 
case of indirect-cycle SCW NPPs; and 3) heat exchangers in case of hydrogen co-generation at SCW NPPs 
from SCW side. 
 
2.  Background 
 

Currently, there is just only one supercritical-water heat-transfer correlation for fuel bundles.  This 
correlation was obtained in a 7-helically-finned-element bundle developed by Dyadyakin and Popov (for 
details, see Figure 3) [3].  It seems that this test bundle was intended for application in a transport (mobile) 
nuclear reactor, not in a power reactor (for example, see Figure 4).  Moreover, heat-transfer correlations for 
bundles are usually very sensitive to a particular bundle design.  Therefore, this correlation cannot be used 
for other bundle geometries. 

To overcome this problem, a wide-range heat-transfer correlation based on bare-tube data can be 
developed as a conservative approach.  The conservative approach is based on a fact that HTCs in bare 
tubes are generally lower than those in bundle geometries, where heat transfer is enhanced with appendages 
(endplates, bearing pads, spacers, buttons, etc.). 

A number of empirical generalized correlations, based on experimentally-obtained datasets, have been 
proposed to calculate the HTC in forced convection for various fluids including water at supercritical 
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HTC values can be up to several hundred percent [3]. 
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Figure 3. Cross-section (a) and 3-D image (b) of the Dyadyakin and Popov test bundle installed inside 
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Figure 4. 3-D image of SCW CANDU-reactor fuel channel with bundle inside. 

2.1 Existing correlations 

Many heat-transfer correlations have been proposed to calculate HTCs in forced convection of various 
fluids including water at supercritical pressures [3]. However, these correlations show very different 
results within the same operating conditions. An analysis performed by Pioro and Duffey [3] showed that 
the Bishop et al. correlation was obtained within the same range of operating conditions as those of SCWRs. 

One of the most widely used correlations for supercritical water and two of the latest ones were chosen 
for this comparison: 1) Bishop et al. correlation [9, 10], 2) Mokry et al. (modified Bishop et al.) correlation 
[11] and 3) Gupta et al. (modified Swenson et al.) correlation. All these three correlations were obtained 
within the same range of operating conditions as those in SCWRs. 

Bishop et al. [9, 10] conducted experiments in supercritical water flowing upward inside bare tubes and 
annuli within the following range of operating parameters: pressure 22.8 — 27.6 MPa, bulk-fluid temperature 
282 — 527°C, mass flux 651 — 3662 kg/m2s and heat flux 0.31 — 3.46 MW/m2. Their data for heat transfer 
in vertical circular bare tubes were generalized using the following correlation with a fit of ±15%: 

(pw)0.43 Reba Prb0.66 pbNub = 0.0069 Re (1 + 2.4E) (1) 

Equation (1) uses the cross-sectional averaged Prandtl number. The last term in the correlation accounts 
for the entrance-region effect. 
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Equation (1) uses the cross-sectional averaged Prandtl number.  The last term in the correlation accounts 
for the entrance-region effect. 
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In the present verification, the Bishop et al. correlation was used without the entrance-region term, 
because this term depends significantly on a particular design of the inlet of the bare test section: 

(pw.\ 0.43 
Nub = 0.0069 Reg .9 rp 1?.66 

'Pb) 
(2) 

This empirical correlation was proposed in the early nineteen-sixties, when experimental techniques 
were not at the same level as they are today. Also, the thermophysical properties of water have been 
updated since that time (for example, a peak in thermal conductivity in critical and pseudocritical points 
within a range of pressures from 22.1 to 25 MPa, was not officially recognized until the nineties [3]). 
Therefore, it was necessary to develop a new or an updated version of the Bishop et al. correlation based on 
a new set of heat-transfer data and the latest thermophysical properties of water [12] within the SCWRs 
operating range. 

Recently, the Bishop et al. correlation was modified by Mokry et al. using experimental dataset obtained 
in Russia by P. Kirillov with co-workers [6]: 

Nub = 0.0061 Reg.9" pr tc).684 ow)0.564 

kPb) (3) 

Swenson et al. [3] found that conventional correlations (for example, Bishop et al.), i.e., correlations in 
which the majority of thermophysical properties based on a bulk-fluid temperature, did not work well; and 
suggested using the wall temperature for thermophysical properties calculations instead. However, the 
correlation they suggested was developed about half a century ago and, like the Bishop et al. correlation, 
might be outdated as well. A modified correlation was then developed by Gupta et al. based on the same 
dataset by Kirillov et al.: 

Nu,, = 0.004 Re1923 
Fx°%,173 (2w)0.366 (pw)0.186 

Fib Pb) 
(4) 

Since the last two correlations were obtained within the same ranges using the same dataset, the current 
comparison will be more representing of how the correlations will predict HTC experimental data within 
other operating conditions. 

However, all these correlations are intended only for use at NHT and IHT regimes. For DHT regime, 
an empirical correlation was proposed for deteriorated heat-flux calculations at which the DHT appears (for 
details, see [13]): 

qdht = —58.97 + 0.745 G , kW /m2 (5) 

A more thorough discussion and comparison of various heat-transfer correlations can be found in Pioro 
and Duffey [3]. 

3. Correlations comparison 

For comparison of these correlations, experimental datasets were retrieved from graphs published in the 
open literature. The following figures show selected datasets and curves calculated with these three 
correlations. The graphs were put in the ascending order of a pressure first, and then mass and heat fluxes, 
respectively. A range of pressures used in this comparison is within 23.5 — 31 MPa, mass fluxes within 249 
— 1260 kg/m2s and heat fluxes within 101 — 698 kW/m2. Tube heated lengths and internal diameters vary 
widely also. A heat-flux value at which the DHT regime starts according to Equation (5) is shown in each 
graph for reference purposes. 

Twenty five graphs in total were collected from Pis'menny et al. experiments. However, in this paper 
only several selected graphs are shown with various mass and heat fluxes (Figures 5-11). In all these 
figures, the Bishop et al. correlation overpredicts slightly experimental HTC values and those values 
calculated with other two correlations within a wide range of flow conditions. Therefore, this correlation 
predicts the lowest wall-temperature values, which is actually an optimistic approach not used in nuclear 
engineering. 

On the opposite, the Gupta et al. correlation predicts the lowest values of HTC and corresponding to that 
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A more thorough discussion and comparison of various heat-transfer correlations can be found in Pioro 

and Duffey [3]. 
 
3.  Correlations comparison 
 

For comparison of these correlations, experimental datasets were retrieved from graphs published in the 
open literature.  The following figures show selected datasets and curves calculated with these three 
correlations.  The graphs were put in the ascending order of a pressure first, and then mass and heat fluxes, 
respectively.  A range of pressures used in this comparison is within 23.5 − 31 MPa, mass fluxes within 249 
− 1260 kg/m2s and heat fluxes within 101 − 698 kW/m2.  Tube heated lengths and internal diameters vary 
widely also.  A heat-flux value at which the DHT regime starts according to Equation (5) is shown in each 
graph for reference purposes. 

Twenty five graphs in total were collected from Pis’menny et al. experiments.  However, in this paper 
only several selected graphs are shown with various mass and heat fluxes (Figures 5−11).  In all these 
figures, the Bishop et al. correlation overpredicts slightly experimental HTC values and those values 
calculated with other two correlations within a wide range of flow conditions.  Therefore, this correlation 
predicts the lowest wall-temperature values, which is actually an optimistic approach not used in nuclear 
engineering. 

On the opposite, the Gupta et al. correlation predicts the lowest values of HTC and corresponding to that 
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The next group of graphs is collected from multiple literature sources/authors to show how the 
correlations behave within a wider range of flow conditions as it is indicated in the captions. 
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Figure 13: Temperature and HTC variations 
along vertical tube (5-m heated length and 10-mm 
ID): Pin = 24.5 MPa, G = 410 kg/m2s, and qavg = 
350 kW/m2 [15]. 
 

 
Figure 15: Temperature and HTC variations 
along vertical tube (7-m heated length and 20.4-
mm ID): Pin = 26.5 MPa, G = 495 kg/m2s, and qavg 
= 507 kW/m2 [16]. 
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Figure 19: Temperature and HTC variations 
along vertical tube (2-m heated length and 9.4-
mm ID): Pin = 31 MPa, G = 540 kg/m2s, and qavg = 
473 kW/m2 [18]. 
 

 

31st Annual Conference of the Canadian Nuclear Society 
34th CNS/CNA Student Conference

May 24 - 27, 2010 
Hilton Montreal Bonaventure, Montreal, Quebec



31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010 
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec 

Bulk-Fluid Enthalpy, kJ/kg 

1600 1800 2000 2200 2400 

Pin = 31.0 MPa 
D = 9.4 mm 
G = 680 kg/m2s 
q.= 473 kW/m2

gant=448 kW/m2 

500 

p I 450 

a) 
Ea 400 

I-

350 in 

__ H
,
mt transfer coefficient

=•=tzt-7._—_—_,._., # # 

r,m . 

Bishop et al. corr. Mokry et al. corr. 

Mod. Swenson et al. corr. ..- .. "." 
.... ...., ......- ...... - 0 ... ... ...m. ....... 

0. 0.  .. ...... 
, .... .... 

.... ____ 

••• . . 

se -Wall
i  410 .0  mperature . temperature 

="ligc te- 
Bulkfluid  Tout 

Tpc = 385°C 

Heated length 

0.0 0.5 1.0 1.5 2.0 2.5 

Axial Location, m 

E 
12 -§" 
8 -se 
4 Li 

Figure 20: Temperature and HTC variations along vertical tube (2.5-m heated length and 9.4-mm 
ID): Pm = 31 MPa, G = 680 kg/m2s, and qm = 473 kW/m2 [18]. 

3.3 Results 

In general, the following trends were observed within the current comparison: 
1) The Gupta et al. correlation is always more conservative in predicting wall-temperature values. The 

Mokry et al. correlation proved to be less conservative compared to the Gupta correlation, but usually 
provides a better fit for experimental data within the most operating conditions. The Bishop et al. 
correlation proved to be the least conservative with almost all predictions for wall temperature below the 
actual experimental values. 

2) At a certain heat flux, i.e., usually at about a double value of the deteriorated heat flux, the Gupta et al. 
correlation deviates significantly from the experimental data, and some unexplained jumps in the 
calculated values were observed. The same phenomenon happens and for the Mokry et al. correlation, 
but at higher heat-flux values. As for the Bishop et al. correlation, no jumps occurred, but the deviation 
from experimental data increases with increasing heat-flux values. 

3) It was found that the longer the tube is, the more accurate each correlation fits the experimental data. 

4. Conclusions 

In this paper, a comprehensive study of selected three heat-transfer correlations applicable for 
supercritical water flowing upward in vertical bare tubes has been conducted. A large dataset was collected 
from 33 papers by 27 authors including more than 125 graphs within wide-range experimental data. This 
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Mokry et al. correlation (modified Bishop et al.) and 3) the Gupta et al. (modified Swenson et al.) correlation. 

The main objective of this paper was to select the best supercritical-water bare-tube correlation for HTC 
calculations in: 1) fuel bundles of SCWRs as a preliminary and conservative approach; 2) heat exchangers in 
case of indirect-cycle SCW NPPs; and 3) heat exchangers in case of hydrogen co-generation at SCW NPPs 
from SCW side. 

The comparison shows that all three correlations predict the experimental data within a reasonable 
uncertainty at the normal and improved heat-transfer regimes and at lower heat and mass fluxes. However, 
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conservative approach than the Mokry et al. correlation by predicting lower heat transfer coefficients and 
corresponding to that higher temperature values. 

Due to this, the modified Swenson et al. correlation could be the best candidate for development of heat-
transfer correlations for bundles, since the HTC's in bundles are usually higher than those in tubes, because 
of heat-transfer enhancements due to appendages in bundles. 

Future work on this topic includes correlating larger supercritical-water datasets with the proposed 
correlation, developing correlation(s) for modeling fluids (supercritical carbon dioxide and refrigerants), 
developing a correlation for supercritical-water bundle data, and developing a correlation for deteriorated 
heat-transfer regimes. 
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