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Abstract 

The paper presents a general model for evaluating the rupture frequencies and reliability of the piping 
system in nuclear power plant based on the theory of semi-Markov process. The proposed model is 
able to incorporate the effect of aging related degradation of pipes. Time dependent rupture frequencies 
are computed and compared against those obtained from the homogeneous Markov process model. 

1 Introduction 

Piping systems in nuclear power plants are susceptible to aging mechanisms such as corrosion, 
cracking and fatigue. Since data regarding pipe ruptures in the nuclear plant are rare, different 
modelling approaches have been developed in the literature to estimate the rupture frequency, which 
serves as a useful input of the frequency of an initiating event in probabilistic safety analysis (PSA). 
The Markov process model has been applied to analyze reliability of the piping system [1]. This 
method identifies various states of degradation, and requires input regarding the transition rates and 
average time taken to recover from one state to another. Based on this input, the Markov model is able 
to predict the rupture frequency in a future operating interval. 

In the context of modelling of pipe failure, the Markov model consists of three main states or events 
other than the normal state of the pipe. They are flaw initiation, leakage and rupture. The Markov 
process model assumes constant transition rate, which means that the transition time follows an 
exponential distribution. In case of an aging piping system, this assumption is problematic. For 
example, flaw initiation rate in degrading pipes is likely to change with the age of the pipe. The 
exponential distribution with constant hazard rate cannot capture this aspect of aging. Typically, the 
Weibull distribution with time-dependent hazard rate is used for modelling the aging effects. In 
summary, the homogeneous Markov process model is not adequate for modelling the aging effects 
contributing to the pipe rupture. 

The objective of this paper is to present a more advanced semi-Markov process (SMP) model for the 
evaluation of rupture frequencies including the effect of aging related degradation mechanisms. 

Section 2 defines the problem of piping reliability analysis, as described in [1]. Section 3 discusses 
formulation of the piping system reliability using semi-Markov process model. 
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2 State Space Model for Piping Reliability Analysis 

2.1 Formulation 

F 

p 
Figure I. Four-state transition model for nuclear piping system degradation 

The Markov process model to predict piping system reliability was proposed in [1]. The model consists 
of four states as seen in Figure 1. In the first state S, the piping system is assumed to be in a normal 
operational state. Flaws formed in the system grow gradually until they become detectable. At this 
time, the system moves to the state F with a transition rate of 4 per year. A detectable flaw is either 
detected and repaired with a repair rate of w, or further degrades until it becomes a detectable leak, or 
directly leads to rupture of the piping system. If the flaw is detected and repaired, the system moves 
back to state S, if not, it moves to either state L or R. The rates to transit from state F to L and F to R 
are Ai, and pi per year respectively. In this model, the transitions S —>F, F -+ L, and L —> R represent 
gradual degradation processes. 

A leak when detected is either repaired with a repair rate of ti or it develops into a rupture with a rate of 
Pr, per year. If the leak is repaired, the system moves back to the state 5, otherwise it transits to the state 
R. 

The system is assumed to be non-repairable, fail state once a flaw or leak develops in to a rupture i.e., 
the state R is an absorbing state. This is primarily done to evaluate the reliability of the piping system. 
It is assumed that all other repairs bring back the system to 'as good as new' condition. 

This four state model is applicable to pipe failure mechanisms which are a combination of crack 
propagation (e.g. thermal fatigue near welds) and wall thinning (e.g. flow accelerated corrosion in pipe 
base metal) failure mechanisms. Failures due to severe loading such as overpressure are not accounted 
as observed from the absence of direct transitions SCR and 5—)L. In other words, leak or a rupture can 
only occur from the state of an existing flaw [1]. 

2.2 Homogeneous Markov Process Model 

The system state transition matrix [2] for the model in Figure 1 is given by: 
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Let S(t), F(t), L(t), and R(t) represent the time-dependent probabilities of being in the states S,F,L, and R 
respectively. These state probabilities can be obtained by solving the system of differential equations 
(2) with the initial condition S(0)=1, F(OL(0)=R(0)= O. The initial condition ensures that the system 
initially starts operating in state S. 

dS(t),Idt = wF(t) + µL(t) — 5S(t) 

dF(t)/dt = OS(t)— (co + AF pF)F(t) 

dL(t),Idt = AFF(t) — (u+ pL)L(t) 

dR(t)/dt = pFF(t) + pLL(t) 

S(t) + F(t)+ L(t) + R(t) = 1 

(2) 

This system of equations is based on the fact that the rate of change of probability of being in any state 
S is negatively proportional to the rate at which the transitions occur outward from S and positively 
proportional to the rate at which inward transitions occur from other states [2]. 

For example, from Figure 1, it is seen that there are two inward transitions in to state S originating 
from states F and L with transition rates and / / respectively. wF(t) and itL(t) are weighted transition 
rates added to (WW1 dt. There is one outward transition to state F with transition rate ) and hence 
negatively influences dS(t)Idt as seen in the system of equations. The numerical solution to this 
system yields the state probabilities. 

2.3 The Semi-Markov Process Model 

2.3.1 Analysis 

This paper follows the general formulation of the continuous-time discrete-state semi-Markov process 
model as described in [3, 4]. 

Let the model have N states. Let f u(t) and F1(t) represent the probability density function (pdf) and 
cumulative distribution function (cdf) respectively of the event corresponding to the transition from 
state i to state j at time t. 

Let the system be in state i. Then the probability that the next state is j and not any other state k is given 
by: 

ez3(t) = fu (t) ri (1 _ Fik(t)) 

k~j 

For N=2, cii(t) = fii(t) The matrix C(t)= [ cu(t) ] is called the kernel or core of the semi-Markov 

process model and 
(N-1) 

Wi(t) = E ci,(t) 
J=0 

(3) 

(4) 
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is called the waiting time distribution for the state i. It represents the probability that the system waits 
in state i for t time units before making a transition. Hence it is an unconditional probability. The 
probability that the system stays in state i without making any transitions is given by: 

I (t) = 1 - tv,(t)dt (5) 

The objective of the model is to determine the probability gu (t) of being in each state j given that the 
system initially is in a particular state i. or; (t) can be determined by solving a system of integral 
equations called the "Markov renewal equations": 

(kii(t) = 6,,I47,(t) + 

Where i= j= k= 0,1,2,...N- 1. 

I Cik (T )(1)ki (t — T)iT

The right hand side of Equation 6 describes the following probabilities: 

• i=j and second term : W, (t) is the probability that the process does not leave state i. 
• i=j and second term not 0: process leaves state i and returns to i by time t. 

,) and second term 0: process leaves state i and reaches state j by time t. 

The system of equations can alternatively be written in a compact form as a matrix: 

t.

= diag(14 (t)) + C(T)0(t - r)dT 

2.3.2 Reliability estimation 

(6) 

(7) 

Given that the system started its operation in state i and that state j is the only absorbing state, the 
failure probability of the system is given by cb, (t), which represents the cumulative distribution 
function (cdj) of the time to rupture (failure). The reliability is given from [2]: 

R,(t) = 1 - Oii(t) (8) 

The hazard rate As (t) of the system is related to the reliability [5]: 

1  dRs(t) 
As (t) = (9) RS (t) dt 

4 4 
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3 Application of SNIP to the Rupture Frequency Analysis 

3.1 Formulation 

The pdft and cdfs are denoted by general symbolsA and F(t) respectively, and the subscripts are used 
to denote the states as shown on in Figure 1. 

- 0 fsp(t) 0 0 
frs(t) 0 fr . /. (t) /FR(t) 
fr,s (t) 0 0 /IR (t) 

0 0 0 0 

F(t) = [
0 FsF(t) 0 0 

Fpg(t) 0 FLR(t) Fi..n(t) 
FL,s(t) 0 0 FLR(t) 

0 0 0 0 

The elements c#(t) of the kernel matrix C(t) are found according to Equation 3: 

Csp(t) =fsF(t) 
CFS(t) = fFs(t)[1 — FFL(t)][1 — FFR(t): 
CFL(t) =fFL(t)[1 — FFS(t)][1 — FFR(t): 
cFR(t) =fFR(t)[1 — FFs(t)][i — FFL(t): 
cLs(t) =fLs(t)[1 — FLR(t)] 
cLR(t) = fr,R(t)[1 — FLS(t)] 

The transition probability matrix and its elements are denoted by 0(t) and 0i.i(t) respectively as per 
Howard's [4] notation. These are a function of time and will be written in bold font in this paper. 0 has 
been used by Fleming in [1] to denote the rate of flaw growth and is independent of time. This symbol 
is written in normal font in the present paper. This approach to distinguish the symbols has been done 
so as to be consistent with the notation of both the authors. 

The flaw occurrence rate 4) is based on the data from results of Non-Destructive Examination (NDE) 
[1]. In order to obtain parameters of an assumed non-exponential distribution for the time to flaw 
growth i.e., for the transition S->F, it is beneficial to additionally consider the variability associated 
with the time to flaw growth from the test results. Hence, the parameters affecting the coy will be the 
chemical, material, texture and other properties taken in to consideration in the NDE inspections. For 
example, let the time to flaw growth until being detectable in the piping system represented by the state 
transition S -> F be considered a Weibull distribution with scale A(' and shape corresponding to the 
mean years and coefficient of variation (coy) of c. Let the rest of the transition times follow 
exponential distribution. W(t) is constructed as per Equation 5, and the details are presented in the 
Appendix. Then the Markov Renewal given in Equation 7 is formulated as : 

0 0 0 0 csF(r) 0 0 

[
e-000' 

0 = 
0 

e—(w-FAFH-pF)t 

0 
0 

e-(p+pi)t 
0 
0

fO

T 
CFS(T) 
CLS(T) 

0 
0 

41,M 
0 

CFR(T) 
CLR(T) 

0(t — 7-)(17-

0 U o 0 0 0 0 

By solving the above system using the trapezoidal rule in Equation A.17, the state probabilities (/)(t) 
can be found. Given that the system initially started in a perfect operating condition (state S), the 
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probability of a flaw being detectable (state F), a leak being detectable (state L) and that of a rupture 
(state R) are given by (hp-(t) = 412(t), OSL(t) = 013(0, and OsR (t) = 014(0 respectively. 

3.2 Results 

The transition rates for the Markov model are taken from [1] and are summarized in Table 1. 

Table 1. Constant transition rates for the piping system model [1] 
Parameter Value 

Flaw detection rate 4.35 x 10-4/yr 
w Repair rate of a detected flaw 2.1 x 10-2/yr 
AF Leak detection rate 1.79 x 10-4/yr 
PF Rupture occurrence rate from flaw state 9.53 x 10-6/yr 

Repair rate of a detected leak 7.92 x 10-1/yr 
PL Rupture occurrence rate from leak state 1.97 x 10-2/yr 

1 0- 2 . 
>- 7 

E 1 0  
<m - 
0 
cc
a. 1 
W 

(f) 105

1 o" 60 

State F DETECTABLE FLAW 

State R RUPTURE 
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10 20 30 40 50 60 70 80 90 100 
YEARS IN TO PLANT LIFE 

Figure 2. State probabilities. Time to flaw growth: mean =o-1 years, coy = 1.0 

When the coefficient of variation of the flaw initiation time is c=1.0, the semi-Markov process model 
yields the same results as reported in [1] using homogeneous Markov model (Figure 2). It is seen that 
the state probability of being in state F is higher than being in states L and R. This is due to timely 
detection and repair of detectable flaws. On repair, the system goes back to state S thus reducing the 
probability of going to state of rupture. 
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Figure 4. State probabilities. Time to flaw growth: mean t
 years, co 1.3 

Now we consider the cases in which flaw initiation time is modelled by the Weibull distribution and 
proposed SNIP model is used for reliability computation. Figure 3 and Figure 4 show the state 
probabilities for c=0.6 and c=1.3 respectively. When c < 1, the state probabilities are lesser than that 
when c = 1. A reduced c implies lesser variability in the time-to-flaw initiation, which leads to smaller 
state probabilities as compared to the case of c= 1. On the other hand, increased c means that there is 
large variance in the observed data. Therefore, the flaw initiation rate is higher, which in turn increases 
the probability of leak and rupture events. 
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Figure 5. Hazard rate of rupture with repair. 
Time to flaw growth: mean 

0-1
 years with cov=0.4, 0.5, ..., 1.3 

The rupture frequency increases with increase in variability (or cov) associated with the time to flaw 
initiation distribution, as shown in Figure 5. In early life time, the transient nature of solution is seen by 
increasing nature of the hazard rate curve. However, a steady state solution is likely to be achieved at 
in long term, which may be way beyond the intended life time of the nuclear plant. 
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Figure 6. Hazard rate of rupture without repair. 
Time to flaw growth: mean 0-1 years with ceir 0.4, 0.5,..., 1.3 

The rupture hazard rate in the absence of repair is plotted in Figure 6. As expected, in the absence of 
repair, the rupture rate will increase significantly. 
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Figure 7. Ratio of rupture rate without repair to rupture rate with repair 

30 

The ratio of rupture rate without repair to rupture rate with repair is shown in Figure 7 for three cases, 
c=0.6, 1 and 1.3. The increasing ratio with time shows that in the absence of repair, rupture rate is 
larger. Moreover, higher the variability in flaw growth, larger is the ratio. At the end of 30 years with a 
variation of 0.6 in the time to flaw growth, it is seen that the rupture rate without repair is four times 
larger than that in the presence of repair. This demonstrates the importance of effective in-service 
inspection (ISI) programs for timely detection and repair of flaws. Further research involves using the 
knowledge of these rupture rates in risk informed programs to optimize the inspection intervals. 

4 Conclusion 

A semi-Markov process model is proposed to analyze reliability of the nuclear piping system. In this 
model, the flaw initiation is modelled by Weibull distribution, which allows to incorporate the aging 
effect, i.e., increase in flaw initiation rate with time. It was observed that the pipe rupture rate increases 
with increase in the variability of time to flaw initiation distribution. Hence, a maintenance program 
that removes the flaw from piping systems and repair leaks promptly will improve the reliability 
against rupture event. The proposed model provides a tool set to optimize the pipe inspection and 
maintenance program over the life cycle of the plant. 

5 References 

[1] K. N. Fleming, "Markov models for evaluating risk-informed in-service inspection strategies 
for nuclear power plant piping systems", Reliability Engineering & System Safety, Vol. 83, 
Iss. 1, 2004, pp.27-45. 

[2] A. Lisnianski and G. Levitin, "Multi-state System Reliability: Assessment, Optimization and 
Applications", World Scientific, Singapore, 2003. 

[3] R. A. Howard, "System analysis of semi-markov processes", IEEE transactions on military 
electronics, Vol.8, Iss.2, 1964, pp.114-124. 

9 9 
 

 
Figure 7. Ratio of rupture rate without repair to rupture rate with repair 

 
The ratio of rupture rate without repair to rupture rate with repair is shown in Figure 7 for three cases, 
c=0.6, 1 and 1.3. The increasing ratio with time shows that in the absence of repair, rupture rate is 
larger. Moreover, higher the variability in flaw growth, larger is the ratio. At the end of 30 years with a 
variation of 0.6 in the time to flaw growth, it is seen that the rupture rate without repair is four times 
larger than that in the presence of repair. This demonstrates the importance of effective in-service 
inspection (ISI) programs for timely detection and repair of flaws. Further research involves using the 
knowledge of these rupture rates in risk informed programs to optimize the inspection intervals. 
 
 

4 Conclusion 

A semi-Markov process model is proposed to analyze reliability of the nuclear piping system. In this 
model, the flaw initiation is modelled by Weibull distribution, which allows to incorporate the aging 
effect, i.e., increase in flaw initiation rate with time. It was observed that the pipe rupture rate increases 
with increase in the variability of time to flaw initiation distribution. Hence, a maintenance program 
that removes the flaw from piping systems and repair leaks promptly will improve the reliability 
against rupture event. The proposed model provides a tool set to optimize the pipe inspection and 
maintenance program over the life cycle of the plant.  

 
 

5 References 
 

[1] K. N. Fleming, “Markov models for evaluating risk-informed in-service inspection strategies 
for nuclear power plant piping systems”, Reliability Engineering & System Safety, Vol. 83, 
Iss. 1, 2004, pp.27-45. 

[2] A. Lisnianski and G. Levitin, “Multi-state System Reliability: Assessment, Optimization and 
Applications”, World Scientific, Singapore, 2003. 

[3]  R. A. Howard, “System analysis of semi-markov processes”, IEEE transactions on military 
electronics, Vol.8, Iss.2, 1964, pp.114-124. 

31st Annual Conference of the Canadian Nuclear Society 
34th CNS/CNA Student Conference

May 24 - 27, 2010 
Hilton Montreal Bonaventure, Montreal, Quebec

http://www.sciencedirect.com/science/journal/09518320�
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235767%232004%23999169998%23470910%23FLA%23&_cdi=5767&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=f9c3b55d63d9ba7bcc9dad5502177b7f�
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235767%232004%23999169998%23470910%23FLA%23&_cdi=5767&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=f9c3b55d63d9ba7bcc9dad5502177b7f�
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235767%232004%23999169998%23470910%23FLA%23&_cdi=5767&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=f9c3b55d63d9ba7bcc9dad5502177b7f�


31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010 
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec 

R. A. Howard, "Dynamic Probabilistic Systems", vol. 1: Markov Models. John Wiley and 
Sons, Inc., New York, USA, 1971. 

L. Xing, K. N. Fleming, and T. L. Wee, "Comparison of Markov model and fault tree 
approach in determining initiating event frequency for systems with two train configurations", 
Reliability Engineering and System Safety, Vol.53, Iss.13, 1996, pp.17-29. 

Cole.W.Gulyas, "Stochastic capability models for degrading satellite constellations", Masters 
diss., Air force Institute of Technology, Ohio, USA, 2007. 

W. R. Nunn and A. M. Desiderio, "Semi-markov processes: An introduction", Center for 
Naval Analyses, 1977, pp. 1-30. 

6 Appendix 

6.1 Closed form solution for W{0 

The Weibull distribution has the following cumulative distribution function: 

FT(tfry, A) = 1 — e—(At)1 (A.10) 
where is the scale parameter and is the shape parameter. 

Consider a row i with more than one non-zero entry. Assume that all the failures and repairs are 
Weibull distributed. Note that repairs can be exponentially distributed by setting shape parameter to 1 
in the Weibull distribution. Then for j=0,1,..N-1, we have 
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Equation 7 can be evaluated by direct numerical integration or using Laplace transforms method. Most 
distributions do not possess a closed form Laplace transform. [6] in a thesis dissertation employed a 
transform approximation method (TAM) to evaluate the Laplace transform of Weibull distribution and 
then numerically evaluated its Laplace inversion. In this paper, we resort to the direct numerical 
integration technique since we assume that we do not know the degradation distribution beforehand. 

Equation 5 is computationally expensive if the integral has to be evaluated for each t. Instead, it can be 
computed as a recurrence relation as follows: 

1 _ .gt wi(tn)dt = 1 
Wi(tn) = wi(tn_i) f ttnn_ i tui(t)dt n > 1 

Where, by trapezoidal rule, we have: 

to t
wi(t)dt = -2 Itivi(4,1) wi (tn)} 

(A.13) 

(A.14) 

However, when all the failure/repair distributions follow Weibull distribution with scale Aik and shape 
ih, WO reduces to a closed form: 

- E (Aik tyrik 
Wi(t) = e k (A.15) 

To solve the system of integral equations, [7] derived the following recurrence relation based on 
trapezoidal rule by distributing t on a set of equally spaced points in the interval [0,t]: 

td 
0(t,i ) = [I — Tc(0)1-1[diag(w(tn)) + At E c(tootn- to At - otn)00) (A.16) 

k=1 

Where -\ t = tH — _1. The solution is started with 0(0) =147(0) = 

The convolution operation in the above equation involves repeated addition and multiplication of 
matrices thus slowing down the computations as n grows. With sufficiently large storage space, the 
following technique for convolution improves the speed: 

k=1 

c(tootn - = [C(t1) C(t2) c(t.)] kgtn_1) 0(4_2) 0(t0) = A.17) 
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