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ABSTRACT 

The CANDU fuel management optimization problem is in many ways different from LWRs fuel 
management, because of the on-line refueling and the complete 3-D geometry problem. Daniel 
Rozon was an outstanding leader in the understanding and resolution of this optimization problem 
and remained during his entire career. Daniel Rozon and his students have used the generalized 
adjoint formalism implemented in standard mathematical programming methods to solve the opti-
mization of the exit burnup in the reactor as well as the optimization of control rod worth or fuel 
enrichment. We have summarized here the theoretical basis of fuel management and resolution 
methods, the latest approaches of optimization and results as obtained using the OPTEX code. 

1. INTRODUCTION 

The fuel management of Canadian deuterium uranium (CANDU) reactors differs completely from 
that in LWRS. The CANDU reactors, moderated and cooled by heavy water, are fueled with natural 
uranium inserted in pressure tubes running horizontally through the core. The on-power refueling 
of the pressurized fuel channels with short fuel bundles (50 cm) is a continuing function of re-
actor operations and leads rapidly to equilibrium core conditions, refueling rate, and fuel burnup. 
Another characteristic of CANDU reactors is that the reactor core is controlled under normal op-
erations using adjuster rods that are perpendicular to the fuel channels, forming a complete 3D 
geometry problem. These refueling characteristics, the exclusive use of natural uranium and the 
requirements to simulate the complete 3D reactor, make LWR optimization approaches impractical 
for CANDU fuel management studies. 
One major objective of fuel management studies is to determine the time-averaged power distribu-
tion in the reactor under equilibrium refueling, which will minimize the fuel cost or total reactor 
feed rate (maximizing the average burnup) while meeting a number of operating constraints as 
channel and bundle powers a constraint on maximum power and on excess reactivity [1]. The 
optimization problem is a non-linear problem as power distribution depends on flux, that depends 
on exit burnup. 
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Professor Daniel Rozon's approach is based on the application of generalized perturbation theory 
(GPT) and mathematical programming to determine an optimal exit average burnup distribution 
in a multizone reactor containing control rods [2]. The perturbation theory developed in the early 
years of numerical modeling of nuclear reactors [3] have been shown to allow the determination 
of characteristics functional and their gradients. Deriving the functions and its derivatives, math-
ematical programming can then be employed to linearize and optimize the problem. The OPTEX 
code was born [4]. 
The numerical determination of such characteristics functional for a CANDU reactor requires very 
powerful 3-D code that can solve diffusion equations and generalized gradients. Daniel Rozon 
was successfully associated with Alain Hebert and his TRIVAC diffusion code [5] since the 80s. 
Supported by the diffusion solver, the OPTEX code evolved to optimize the fuel burnup under 
a variety of constraints: the cobalt content of the adjuster rods or the size of the stainless-steel 
adjuster rods to overcome xenon poisoning of the reactor under short shutdown conditions, the 
minimization of the channel power peaking factor (CPPF) [6] and the fuel enrichment. In 2005, 
OPTEX was further developed to improve the original mathematical programming that requires 
gradient calculations [7], and also to completely replace them by advanced optimization methods 
based on tabu search [8]. 
This paper describes the main fuel management problem in CANDU reactors and the GPT use 
to optimize the average exit burnup calculations. The goal of solving this optimization problem 
has driven the development of outstanding reactor physics codes, still unique in the CANDU in-
dustry. The steps to achieve such numerical calculations and the reactor physics codes used are 
explained. The following sections are devoted to present the fuel management problem itself and 
the mathematical programming development in OPTEX. The evolution of the gradient methods to 
optimize the fuel management problem towards meta-heuristic methods is described. Some results 
are finally presented on CANDU reactors from Natural Uranium reactor to ACR reactors. 

2. CANDU REACTOR FUEL MANAGEMENT 

Because CANDU reactors are on-line refueled, the design of the reactor is established using the 
time-average model where the reactor power distribution represents the reactor powers average 
over time. This is not a practical definition of the time-average model. The model is whereas 
defined as a standard static diffusion equation in which the cross sections are averaged locally over 
the refueling times of each channel. The cross sections Ejk on bundle k in channel j are computed 
as: 

1 j•T i

Ti o 
Ejk = E[Bik(t)]dt (1) 

where Ti is the refueling time interval of channel j, and Bak the burnup of bundle k in channel j. 
The standard static diffusion equation to solve is then 

M[X, L]cb = AF[X, L]cb (2) 

where q is the neutron flux distribution, M is the neutron removal operator, containing the diffusion 
and the removal operator, F is the neutron production operator, containing the scattering and the 
fission operator and A the eigenvalue of the system. The determination of the operators M and 

2 
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a variety of constraints: the cobalt content of the adjuster rods or the size of the stainless-steel
adjuster rods to overcome xenon poisoning of the reactor under short shutdown conditions, the
minimization of the channel power peaking factor (CPPF) [6] and the fuel enrichment. In 2005,
OPTEX was further developed to improve the original mathematical programming that requires
gradient calculations [7], and also to completely replace them by advanced optimization methods
based on tabu search [8].
This paper describes the main fuel management problem in CANDU reactors and the GPT use
to optimize the average exit burnup calculations. The goal of solving this optimization problem
has driven the development of outstanding reactor physics codes, still unique in the CANDU in-
dustry. The steps to achieve such numerical calculations and the reactor physics codes used are
explained. The following sections are devoted to present the fuel management problem itself and
the mathematical programming development in OPTEX. The evolution of the gradient methods to
optimize the fuel management problem towards meta-heuristic methods is described. Some results
are finally presented on CANDU reactors from Natural Uranium reactor to ACR reactors.

2. CANDU REACTOR FUEL MANAGEMENT

Because CANDU reactors are on-line refueled, the design of the reactor is established using the
time-average model where the reactor power distribution represents the reactor powers average
over time. This is not a practical definition of the time-average model. The model is whereas
defined as a standard static diffusion equation in which the cross sections are averaged locally over
the refueling times of each channel. The cross sections Σjk on bundle k in channel j are computed
as:

Σjk =
1

Tj

∫ Tj

0

Σ[Bjk(t)]dt (1)

where Tj is the refueling time interval of channel j, and Bjk the burnup of bundle k in channel j.
The standard static diffusion equation to solve is then

M [X,L]φ = λF [X,L]φ (2)

where φ is the neutron flux distribution,M is the neutron removal operator, containing the diffusion
and the removal operator, F is the neutron production operator, containing the scattering and the
fission operator and λ the eigenvalue of the system. The determination of the operators M and
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Figure 1: General algorithm of the time average method. 

F is function of the global and local parameters L in the reactor, i.e. fuel temperature, coolant 
density, and function of the actual refueling strategy X, i.e. the refueling scheme, the burnup, the 
new bundle types. The 3-D geometry of a CANDU reactor dictates that the above equation has to 
be solved on a 3-D cartesian domain. 
A large amount of input information (local parameter dependent cross sections, refueling strategy 
information, core geometry description) and strong numerical methods are required to achieve the 
convergence of this equation, from which the outputs quantities are the flux distribution and the 
domain eigenvalue. Figure 1 shows the main algorithm to obtain the flux/power distribution over 
the reactor. To optimize the average exit burnup over the reactor, this is the elementary problem to 
obtain the neutron flux 0. 
The main codes require to obtain the flux distribution following this basic algorithm: a lattice 
code to generate the cross sections depending on a range of local parameters to cover the reactor 
conditions and a reactor code to reproduce a 3-D cartesian geometry domain and to solve the 
diffusion equation using the time-average model for the cross sections. At the Institut de Genie 
Nucleaire, two main contributing codes have been developed the lattice code DRAGON [9] and 
the diffusion code TRIVAC [5]. 

2.1. Description of non-linear functionals 

Any optimization problem is defined by: 

• a set of control variables to be optimized, 

• the objective function which gives a way to rate different sets of control variables, 
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F is function of the global and local parameters L in the reactor, i.e. fuel temperature, coolant
density, and function of the actual refueling strategy X , i.e. the refueling scheme, the burnup, the
new bundle types. The 3-D geometry of a CANDU reactor dictates that the above equation has to
be solved on a 3-D cartesian domain.
A large amount of input information (local parameter dependent cross sections, refueling strategy
information, core geometry description) and strong numerical methods are required to achieve the
convergence of this equation, from which the outputs quantities are the flux distribution and the
domain eigenvalue. Figure 1 shows the main algorithm to obtain the flux/power distribution over
the reactor. To optimize the average exit burnup over the reactor, this is the elementary problem to
obtain the neutron flux φ.
The main codes require to obtain the flux distribution following this basic algorithm: a lattice
code to generate the cross sections depending on a range of local parameters to cover the reactor
conditions and a reactor code to reproduce a 3-D cartesian geometry domain and to solve the
diffusion equation using the time-average model for the cross sections. At the Institut de Génie
Nucléaire, two main contributing codes have been developed the lattice code DRAGON [9] and
the diffusion code TRIVAC [5].

2.1. Description of non-linear functionals

Any optimization problem is defined by:

• a set of control variables to be optimized,

• the objective function which gives a way to rate different sets of control variables,
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• and finally the constraints, either simply the range value of the variables, or representing 
limitation of the physical problem which is simulated. 

Let X be the /-component vector of the control variables. The system characteristics are linear or 
bilinear ratios of the form: 

or 

(Ei (x, OM) 
P(°' x) = (Ei (xm, o(r)) 

(0* (f1), F (X f1)0(f)) 
R(°* X (0* (f1), G (X f1)0(f)) 

where q and .0* are n-component vectors of continuous functions, positive over the spatial domain 
of r, and representing the n-energy group time-averaged flux and adjoint flux distributions. The 
vectors El and E2 and the n x n operator matrices F and G describe the system matrices over the 
reactor. The brackets (, ) stand for the integration with f° over the entire domain and the summation 
over the n components. The system characteristics can define the functional to optimize or its 
constraints. 

3. DESCRIPTION OF THE CANDU FUEL MANAGEMENT 

(3) 

(4) 

The CANDU fuel management problem is based on the time-average core definition used to de-
sign the reactor. The fuel management problem is also dependent on other parameters such as the 
maximum allowed channel power, the reactivity reserve to recover from short shutdown. To opti-
mize the design of the efficient CANDU reactors, a tool has been developed by the IGN at Ecole 
Polytechnique: OPTEX. Before we illustrate the different studies OPTEX has been used for, we 
present in this section the theory and the formulas involved in the fuel management of CANDU 
reactor in OPTEX. 

3.1. Definition of the fuel management problem 

Here we present the fuel management problem. Note that the space dependency (f) is dropped 
to simplify the notations. First, the decision vector, or control variables, X includes usually the 
average exit bumup distribution B. Several parameters have been optimized in previous studies: 
the adjuster rod geometry a or the fuel enrichment E. Other parameters could also be optimized 
with OPTEX such as the fuel poison concentration or the number of bundle shift during refueling. 
Thus the decision vector X can be expressed as 

X = [B, a, 6, ...] (5) 

As for the objective function Fc, the main goal is to optimize the equilibrium fuelling costs per 
unit energy in dollars per megawatt, which can be written as 

CH 

Fc =  B (6) 
(H, .0) 

where C represents the fuel cost per unit of mass, H is the energy released per unit of mass, B the 
average exit bumup and q is the neutron flux in the reactor. 
Finally, the constraints are the following: 
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• and finally the constraints, either simply the range value of the variables, or representing
limitation of the physical problem which is simulated.

Let X be the I-component vector of the control variables. The system characteristics are linear or
bilinear ratios of the form:

P (φ;X) =
〈Σ1(X,~r), φ(~r)〉
〈Σ1(X,~r), φ(~r)〉

(3)

or

R(φ∗, φ,X) =
〈φ∗(~r), F (X,~r)φ(~r)〉
〈φ∗(~r), G(X,~r)φ(~r)〉

(4)

where φ and φ∗ are n-component vectors of continuous functions, positive over the spatial domain
of ~r, and representing the n-energy group time-averaged flux and adjoint flux distributions. The
vectors Σ1 and Σ2 and the n × n operator matrices F and G describe the system matrices over the
reactor. The brackets 〈, 〉 stand for the integration with ~r over the entire domain and the summation
over the n components. The system characteristics can define the functional to optimize or its
constraints.

3. DESCRIPTION OF THE CANDU FUEL MANAGEMENT

The CANDU fuel management problem is based on the time-average core definition used to de-
sign the reactor. The fuel management problem is also dependent on other parameters such as the
maximum allowed channel power, the reactivity reserve to recover from short shutdown. To opti-
mize the design of the efficient CANDU reactors, a tool has been developed by the IGN at Ecole
Polytechnique: OPTEX. Before we illustrate the different studies OPTEX has been used for, we
present in this section the theory and the formulas involved in the fuel management of CANDU
reactor in OPTEX.

3.1. Definition of the fuel management problem

Here we present the fuel management problem. Note that the space dependency (~r) is dropped
to simplify the notations. First, the decision vector, or control variables, X includes usually the
average exit burnup distribution B. Several parameters have been optimized in previous studies:
the adjuster rod geometry α or the fuel enrichment ε. Other parameters could also be optimized
with OPTEX such as the fuel poison concentration or the number of bundle shift during refueling.
Thus the decision vector X can be expressed as

X = [B,α, ε, ...] (5)

As for the objective function FC , the main goal is to optimize the equilibrium fuelling costs per
unit energy in dollars per megawatt, which can be written as

FC =
CH
B
, φ

〈H,φ〉
(6)

where C represents the fuel cost per unit of mass, H is the energy released per unit of mass, B the
average exit burnup and φ is the neutron flux in the reactor.
Finally, the constraints are the following:
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• The reactor must be critical, on a time-average basis 

keff (X,cb,cb*) = 1.0 (7) 

• The power distribution in the reactor must be such that limits on the fuel are not exceeded for 
safety reasons. The approach used in OPTEX to verify the power constraints is to monitor 
the average power in a limited number of control zones J. Thus, we will impose: 

qi (X, 0) C Q (j = 1, • • •J) (8) 

where Qi is the fixed limit and qj is the power form factor in zone j. The zonal form factors 
are defined by 

qi(X, 0) = Zi(X) x fi(X, 0) (j =1, ...,J) (9) 

where fi is the time-average zonal power fraction, i.e., the ratio of the volume averaged 
power in zone j (volume V) to the volume averaged power in the core (volume V), as 
obtained from the time-average flux distribution at equilibrium refueling: 

V (H, 
ii(X,0)=  

Vi (H2O))v 

The control zones are arbitrary and may contain any combination of fuel bundles and/or 
channels. The term Zi is the zonal power peaking factor expressing the variation of the 
instantaneous peak power around the time-average value. The choice of the subvolumes Vj
is at most limited to be a single channel or a single bundle, then we have: 

CPPF(Xj) if V is a fuel channel 
Zi  BPPF(Xj) if V is a fuel bundle 

where CPPF is the channel power peaking factor and BPPF is the bundle power peaking 
factor. These factors are the ratio of the instantaneous channel or bundle power over the 
time-average channel or bundle power. 

Thus, a total of J additional constraints are imposed to satisfy the limits on the power form 
factors q3. We note that the form factors are homogeneous functionals of the time-average 
neutron flux. 

• Depending of the optimization problem, we may have additional constraints. One of them is 
the adjuster rods minimum reactivity worth Akadi to meet design requirements. 

keff(xo, 00,.0) keff (X, 0, 0*) Akadi (10) 

where the subscript 0 indicates the absence of adjusters in the reactor. 

• An other additional constraint is the core void reactivity pv defined by 

1 1 

keff(X,0,0*) keff(Xv,0v,OV) C 
Pv

where the subscript V indicates the absence of coolant (i.e. void) in the fuel channels. 
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• The reactor must be critical, on a time-average basis

keff (X,φ, φ∗) = 1.0 (7)

• The power distribution in the reactor must be such that limits on the fuel are not exceeded for
safety reasons. The approach used in OPTEX to verify the power constraints is to monitor
the average power in a limited number of control zones J . Thus, we will impose:

qj(X,φ) ≤ Qj (j = 1, ..., J) (8)

where Qj is the fixed limit and qj is the power form factor in zone j. The zonal form factors
are defined by

qj(X,φ) = Zj(X)× fj(X,φ) (j = 1, ..., J) (9)

where fj is the time-average zonal power fraction, i.e., the ratio of the volume averaged
power in zone j (volume Vj) to the volume averaged power in the core (volume V ), as
obtained from the time-average flux distribution at equilibrium refueling:

fj(X,φ) =
V

Vj

〈H,φ)〉Vj
〈H,φ)〉V

The control zones are arbitrary and may contain any combination of fuel bundles and/or
channels. The term Zj is the zonal power peaking factor expressing the variation of the
instantaneous peak power around the time-average value. The choice of the subvolumes Vj

is at most limited to be a single channel or a single bundle, then we have:

Zj =

{
CPPF (Xj) if Vj is a fuel channel
BPPF (Xj) if Vj is a fuel bundle

where CPPF is the channel power peaking factor and BPPF is the bundle power peaking
factor. These factors are the ratio of the instantaneous channel or bundle power over the
time-average channel or bundle power.

Thus, a total of J additional constraints are imposed to satisfy the limits on the power form
factors qj . We note that the form factors are homogeneous functionals of the time-average
neutron flux.

• Depending of the optimization problem, we may have additional constraints. One of them is
the adjuster rods minimum reactivity worth ∆kadj to meet design requirements.

keff (X0, φ0, φ
∗
0)− keff (X,φ, φ∗) ≥ ∆kadj (10)

where the subscript 0 indicates the absence of adjusters in the reactor.

• An other additional constraint is the core void reactivity ρV defined by

1

keff (X,φ, φ∗)
− 1

keff (XV , φV , φ∗V )
≤ ρV (11)

where the subscript V indicates the absence of coolant (i.e. void) in the fuel channels.
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3.2. Generalized adjoint calculation 

This optimization problem is a non-linear problem. To solve it by using the GPT, one have to 
linearize the problem defined by Eq. (6), (7), (9) and other optional constraints Eq. (10) and (11). 
This leads to the following linear optimization problem: 

Vq.AX = bi — hi (Xk) 
min V f k .AX with 
AX 

Vgl; .AX 
x nINF < 

< 
Axn

ci — g3 (Xk) 
< x nSUP x nk 

(12) 

where f represents the objective function Fc, hi is the neutron multiplication factor keff, gj rep-
resents the power distribution constraints qj or other < constraints (Akadi or pv). The index k 
represents the outer iteration of the optimization algorithm. Then, Xk stands for the current value 
of X at iteration k. 
The generalized adjoints are used to compute the gradients required in the simplex related methods. 
Let us consider, for example, the zonal power form factors qj in Eq. (9). We note cii, the i'th 
component of the gradient of q3. It accounts for the perturbations of the decision variable AXi, 
e.g. in a given burnup or any other decision variable. Because of the neutronic coupling between 
regions in the reactor, it is obvious that the component of the gradient in a control zone V outside 
of the perturbated region V will not disappear. Formal differentiation of Eq. (9) yields 

Oqi 
+

aqi acb 
OXi) = + 

(5"., 
, ri) aqi cii — (13) 

OXi 0.0 aXi 3

direct flux induced 

The function Fi can be obtained by direct differentiation: 

(M — AF)Fi = —(
0M AaOxF A

i a
O
x i fil)° = (i = 1, •"' I) (14)OXi

where M, F and A are defined in Eq. (2). 
The more traditional GPT approach, called "implicit" approach, is possible as 

ci3 
=

aX  
aqi

i 
+ (r3 , so 

where F*3 is the generalized adjoint, solution to the adjoint fixed source eigenvalue problem: 

'NJ 
(M* AF*)Ft =  = (j = 1, ..., J) (16) 3 ao 

This approach is labeled implicit in the sense that the flux effect of the perturbations is implic-
itly accounted for by the generalized adjoints, which act as an importance function for the j' th 
characteristic functional. We note that 

(15) 

(S;, Fi) = Si) (i = 1, ..., I) , (j = 1, ..., J) (17) 

Both implicit and explicit approaches can be used in OPTEX. (See companion paper for more 
details on adjoints and generalized adjoints [10]) 
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3.2. Generalized adjoint calculation

This optimization problem is a non-linear problem. To solve it by using the GPT, one have to
linearize the problem defined by Eq. (6), (7), (9) and other optional constraints Eq. (10) and (11).
This leads to the following linear optimization problem:

min
∆X
∇fk.∆X with


∇hk

i .∆X = bi − hi

(
Xk
)

∇gk
j .∆X ≤ cj − gj

(
Xk
)

XINF
n −Xk

n ≤ ∆Xn ≤ XSUP
n −Xk

n

(12)

where f represents the objective function FC , hi is the neutron multiplication factor keff , gj rep-
resents the power distribution constraints qj or other ≤ constraints (∆kadj or ρV ). The index k
represents the outer iteration of the optimization algorithm. Then, Xk stands for the current value
of X at iteration k.
The generalized adjoints are used to compute the gradients required in the simplex related methods.
Let us consider, for example, the zonal power form factors qj in Eq. (9). We note cij , the i’th
component of the gradient of qj . It accounts for the perturbations of the decision variable ∆Xi,
e.g. in a given burnup or any other decision variable. Because of the neutronic coupling between
regions in the reactor, it is obvious that the component of the gradient in a control zone Vj outside
of the perturbated region Vi will not disappear. Formal differentiation of Eq. (9) yields

cij =
∂qi
∂Xi︸︷︷︸
direct

+ 〈∂qj
∂φ

,
∂φ

∂φ
∂Xi〉︸ ︷︷ ︸

flux induced

=
∂qi
∂Xi

+ 〈S∗
j ,Γi〉 (13)

The function Γi can be obtained by direct differentiation:

(M − λF )Γi = −(
∂M

∂Xi

− λ ∂F
∂Xi

− ∂λ

∂Xi

F )φ = Si (i = 1, ..., I) (14)

where M , F and λ are defined in Eq. (2).
The more traditional GPT approach, called ”implicit” approach, is possible as

cij =
∂qj
∂Xi

+ 〈Γ∗
j , Si〉 (15)

where Γ∗j is the generalized adjoint, solution to the adjoint fixed source eigenvalue problem:

(M∗ − λF ∗)Γ∗
j =

∂qj
∂φ

= S∗
j (j = 1, ..., J) (16)

This approach is labeled implicit in the sense that the flux effect of the perturbations is implic-
itly accounted for by the generalized adjoints, which act as an importance function for the j’th
characteristic functional. We note that

〈S∗
j ,Γi〉 = 〈Γ∗

j , Si〉 (i = 1, ..., I) , (j = 1, ..., J) (17)

Both implicit and explicit approaches can be used in OPTEX. (See companion paper for more
details on adjoints and generalized adjoints [10])
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4. MATHEMATICAL PROGRAMMING OR OTHER APPROACHES IN OPTEX 

4.1. Gradient based method 

In the previous section, we have presented, together with its definition, how the fuel management 
problem can be linearized, and how gradients are computed. Here we explain the different methods 
used to solve the fuel management optimization problem in more details. 
The gradient-based methods are implemented in the code OPTEX. It has been built on using the 
TRIVAC code as a diffusion solver and relying on the DRAGON code to provide fuel and reflector 
cross sections and control reactivity device cross sections, resulting of 3-D transport calculation 
in DRAGON. These two codes allow the research on fuel management to be developed in Ecole 
Polytechnique independently of any other code or any other company. The TRIVAC code also pro-
vides a very important feature to OPTEX: the generalized gradient solver as defined in Equation 
(16). 
In a mathematical programming point of view, using a gradient-based method to solve an optimiza-
tion problem is a basic method that poses no difficulties. However in the context of the CANDU 
reactor fuel management, the evaluations of the objective function and its derivatives over the 
problem constraints are driven by large effort in solving the diffusion equation (objective function 
f (cb, X)) and solving the generalized gradients (derivatives). 
We first describe the general algorithm of the gradient-based methods. Figure 2 shows that the 
process is iterative. Starting from a guessed set of variables X°, one computes the flux and then 
the gradients. This gives the linearized optimization problem (Eq. 12), which is solved and leads 
to a new point to start with at the next iteration Xk+1. 
The first method developed in OPTEX is the well known, so called Simplex method. This method 
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4. MATHEMATICAL PROGRAMMING OR OTHER APPROACHES IN OPTEX

4.1. Gradient based method

In the previous section, we have presented, together with its definition, how the fuel management
problem can be linearized, and how gradients are computed. Here we explain the different methods
used to solve the fuel management optimization problem in more details.
The gradient-based methods are implemented in the code OPTEX. It has been built on using the
TRIVAC code as a diffusion solver and relying on the DRAGON code to provide fuel and reflector
cross sections and control reactivity device cross sections, resulting of 3-D transport calculation
in DRAGON. These two codes allow the research on fuel management to be developed in Ecole
Polytechnique independently of any other code or any other company. The TRIVAC code also pro-
vides a very important feature to OPTEX: the generalized gradient solver as defined in Equation
(16).
In a mathematical programming point of view, using a gradient-based method to solve an optimiza-
tion problem is a basic method that poses no difficulties. However in the context of the CANDU
reactor fuel management, the evaluations of the objective function and its derivatives over the
problem constraints are driven by large effort in solving the diffusion equation (objective function
f(φ,X)) and solving the generalized gradients (derivatives).
We first describe the general algorithm of the gradient-based methods. Figure 2 shows that the
process is iterative. Starting from a guessed set of variables X0, one computes the flux and then
the gradients. This gives the linearized optimization problem (Eq. 12), which is solved and leads
to a new point to start with at the next iteration Xk+1.
The first method developed in OPTEX is the well known, so called Simplex method. This method
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is designed to solve linear problems with constraints of the type equality '='. However in our case, 
all constraints of the type inequality < or > have to be replaced by constrains of the type = with 
the introduction of dummy variables (xi > 0) added to the decision vector. The Simplex algorithm 
consists in following the border of the polytope formed by the constraints, from one summit to 
another, until the optimum is found. This particular method introduces a bias in the optimization 
path. Indeed, the fact that the new point is always on a summit of the polytope may deviate the 
current solution from the general direction towards the optimum. To remove this limitation, the 
Method of Approximate Programming (MAP) developed by Griffits [11] was introduced as one of 
the available methods in OPTEX. It is mainly based on the Simplex method except that a quadratic 
constraint is added to limit the advance step (AX) [2]. 
Another method available in OPTEX is the so-called Lemke method [12]. Based on the fact that 
the optimum is either on the border of the domain or at a point where all gradients are zero, Lemke 
introduced a new formulation combining the primal and dual forms of the optimization problem. 
Solving this new problem leads to the optimum of the original linearized optimization problem. 
In general these three basic methods (simplex, MAP and lemke) are very efficient and fast, but they 
have a major drawback: the starting point. They require a starting point in the feasible domain, 
i.e. decision variables X which respect all the constraints. Two problems arise directly from this 
limitation. First, with the general iterative algorithm, the new point (after optimization search) 
may not respect the constraints if the advance step is too large and if the fuel management problem 
is highly non-linear. The solution is straightforward by reducing the advance step OX, but it 
increases computation requirements. 
The second problem is to find a first point to start the iterative process. A realistic core power 
distribution can be easily found when only a few surveillance zones are selected in the reactor. For 
larger number of zones or for a brand new reactor design, we introduced the augmented lagrangian 
method and the penalty method in OPTEX [7]. Both methods consist in including the constraints 
within the objective function with an appropriate weight. A new general optimization problem 
without constraints is then solved, leading to the same results as long as the weights of the con-
straints are properly managed. The resulting algorithm involves several levels of iterations as it is 
illustrated in Figure 3. The constraint weights are updated in the outer iteration of the optimization 
algorithm. 

4.2. Metaheuristic methods 

The general rule of gradient-based methods is to follow the slope (gradient) toward a better point. 
They cannot go backwards. Their major drawback is that the optimization algorithm can get 
trapped into local optimum. To solve this problem, a new method was programmed in OPTEX: 
the TABU search [8]. Its metaheuristic-type algorithm is presented on Figure 4. The general idea 
of those methods is to try at each iteration some random configurations of the decision variables 
(X), and learn from them in which direction to look for. None of the tryouts may be better than the 
reference value though, but it can still replace the current estimate. This option called ' exploration' 
helps to get out of a local minimum. It is the major advantage of those methods. However, there is 
no limit in the TABU method during the exploration phase. It also represents the major drawback 
of the meta-heuristic method: to have a realistic convergence criterion. 
In a mathematical point of view, metaheuristic methods are also very simple to implement. No 
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Figure 5: Effect of the burnup optimization on radial flux shape 

gradient calculation is needed; only objective function evaluations are required. However, those 
methods cannot handle optimization problem with constraints, thus similarly to the augmented 
lagrangian method, the constraints are included in the objective function. The difference though 
with the augmented lagrangian method is that the weights are constant in the metaheuristic method. 

5. CANDU DESIGN STUDIES 

5.1. Original CANDU results 

OPTEX code was developped first on a 1-D slab reactor to test on the mathematical programming 
[1]. The optimization algorithm was applied to find the optimum burnup values in a simplified re-
actor, with a control absorber in the centre of the core. The number of burnup zones was increased 
to show that it affects positively the problem by increasing the average exit burnup of the reactor. 
The increase is up to 1.9% when only the burnups are optimized, and up to 7.8% when adjusters 
zones are introduced and optimized together with the burnup zones. An illustration of the thermal 
flux profile corresponding to the optimized configurations is compared to the reference flux on 
Figure 5. On this figure, e stands for burnup, a for the adjuster zones. 
As previously explained, the refueling characteristics of CANDU reactors require to use a complete 
3D simulation of those reactors. That was obviously the case in the work of Rozon and Beaudet [2], 
where the adjuster sizes themselves were optimized. The results of Table III in [2] are too long to 
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with the augmented lagrangian method is that the weights are constant in the metaheuristic method.
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5.1. Original CANDU results

OPTEX code was developped first on a 1-D slab reactor to test on the mathematical programming
[1]. The optimization algorithm was applied to find the optimum burnup values in a simplified re-
actor, with a control absorber in the centre of the core. The number of burnup zones was increased
to show that it affects positively the problem by increasing the average exit burnup of the reactor.
The increase is up to 1.9% when only the burnups are optimized, and up to 7.8% when adjusters
zones are introduced and optimized together with the burnup zones. An illustration of the thermal
flux profile corresponding to the optimized configurations is compared to the reference flux on
Figure 5. On this figure, θ stands for burnup, α for the adjuster zones.
As previously explained, the refueling characteristics of CANDU reactors require to use a complete
3D simulation of those reactors. That was obviously the case in the work of Rozon and Beaudet [2],
where the adjuster sizes themselves were optimized. The results of Table III in [2] are too long to

10

31st Annual Conference of the Canadian Nuclear Society 
34th CNS/CNA Student Conference

May 24 - 27, 2010 
Hilton Montreal Bonaventure, Montreal, Quebec



31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010 
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec 

1 2 3 4 
Burnup(MWd/t) 

5 6 7 8 9 10 11 12 13 
IJ 
L7 

14 
L6 
Z2 

15 16 17 18 19 20 21 22 
A OS 

L5 

8600 
02 
0.6 

0.2 
0.6 

0.1 
0.6 

02 
0.7 

0.9 2.3 
1.5 2.9 

B 
02 
0.1 

-0.0 
0.0 

-0.1 
0.0 

02 
0.4 

0.3 0.5 
0.7 1.0 

1.6 
2.2 C 

0.8 0.8 0.5 0.9 -0.1 0.7 0.4 1.7 

8400 

7 -

0.8 
-0.9 

-0.7 
-0.6 

0.8 
-0.6 
-0.9 
-1.1 
-1.3 

0.4 
-1.2 
-1.5 
-1.7 
-1.6 

1.0 
-1.3 
-1.2 
-1.0 
-1.5 

-0.0 1.2 
1.2 0.4 
1.3 0.3 
-1.3 -2.6 
-1.5-Z7 

0.9 2.3 
0.8 0.5 1.9 
1.3 1.0 2.4 
-0.0 0.4 0.6 
0.1 0.8 1.0 

E 

F 

8200 T- 1 1.5 
1.6 

0.1 
-0.2 

1.1 
0.2 

1.4 
2.2 

-0.8 -0.7 
-1.3 -0.9 

0.5 0.5 0.4 
0.4 1.0 0.8 

1.5 
2.0 G 

0.5 
1.7 

0.0 
-0.1 

0.1 
-0.2 

1.0 
2.5 

0.5 -0.3 
-1.0-0.6 

-2.6 0.4 0.6 
-2.70.5 1.1 

0.5 
1.0 

H 

8000 111! 0.1 
0.1 

0.0 
-0.3 
-0.4 
-0.6 

0.5 
-0.2 
-0.1 
-0.5 

0.4 
-0.1 
0.0 
-0.8 

-0.7 -1.3 
-1.6 -1.6 
-0.0 -1.3 
-0.4 -1.3 

-1.6 0.6 -0.0 0.4 
-1.5 0.6 0.1 0.8 
-2.4 0.7 0.1 0.1 
-2.3 0.6 0.2 0.6 

2.0 J 
2.6 
1.3 K 
1.8 

-0.1 
-0.1 
-0.4 
-0.3 

-0.9 
-1.1 

-0.2 
-0.6 

0.4 
-0.5 

0.1 -0.5 
-0.2 -0.7 

-22 1.5 0.3 
-1.9 1.5 0.7 

-0.0 
. 

1.0 L 
. 

7800 -1.0 
-1.0 

-0.7 
-0.9 

-0.1 
-0.4 

0.6 
0.1 

0.6 0.8 
1.6 1.1 

-1.8 1.2 0.5 
-1.8 1.4 0.7 

0.1 
0.2 

1.0 M 
1.5 

-0.1 
-0.2 

-0.3 
-0.7 

0.2 
-0.2 

1.4 
0.7 

-0.4 0.1 
0.8 0.5 

-2.1 1.6 0.4 
-2.0 1.6 0.5 

0.5 
1.0 

1.4 N 
1.9 

7600 
0.0 
0.0 

0.4 
-0.2 

0.7 
0.0 

1.8 
1.2 

1.5 0.6 
1.0 0.2 

-1.4 1.0 0.2 
-1.4 1.0 0.1 

0.5 
0.9 

2.0 
2.6 

0.6 
1.8 

0.6 
0.1 

0.7 
0.0 

0.4 
2.3 

0.2 -0.1 
-0.6 -0.4 

-2.4 0.5 0.6 
-2.4 0.6 1.1 

0.8 
1.2 

P 
1.6 
2.4 

0.1 
-0.2 

0.1 
-0.4 

02 
-1.7 

-1.2 -2.0 
-1.4 -2.2 

1.3 1.7 0.7 
1.6 1.9 1.1 

1.8 
2.4 Q 

7400 -1.2 
-1.2 

-0.5 
-0.6 

-0.7 
-1.0 

-2.2 
-2.4 

-1.8 -3.9 
-1.8 -3.8 

1.0 0.6 1.3 
1.2 0.9 1.7 

R 
-0.9 
-1.0 

-2.7 
-2.5 

-2.8 
-3.1 

-2.5 
-2.8 

0.6 1.9 
0.4 2.0 

1.1 1.1 2.3 
1.2 1.5 2.8 

S 

7200 0.7 
0.7 

0.7 
0.7 

0.5 
0.5 

02 
0.1 

0.3 0.5 
0.3 0.8 

1.0 2.1 
1.5 2.6 

T 
03 
0.9 

0.1 0.1 0.4 0.5 1.0 2.3 
0.1 0.2 1.0 0.9 1.4 2.7 

02 
as 

0.4 0.6 0.6 1.4 2.9 
0.7 
1.5 

1.0 
2.1 

1.0 1.9 3.4 Multi-Step 
13 
1.8 ZO Z6 Mixed 

Figure 6: Distribution of the burnup in the 190-zone case 

be reproduced here. However, the important fact to notice was that within approximately 10 outer 
iterations (see algorithm in Figure 2), the optimum was found for an optimization problem with 3 
burnup zones and 16 different sizes of adjusters. The OPTEX code is really fast and converges on 
very similar configurations regardless of the initial guess in this case of average complexity. 
Starting in 2005, more advanced mathematical programming method were introduced in OPTEX 
[7, 13]. The penalty and augmented lagragien methods were included in different general algo-
rithms and approaches to optimize the fuel management problem. Indeed, each mathematical 
programming method has pros and cons. Several combinations of these methods were presented: 
the quasilinear programming (QLP), the multistep method (MS) and the mixed method (MM). 
Very complex optimization case with 190 burnup zones on a CANDU-6 reactor was considered. In 
this case, each burnup zone is composed of the two left/right symmetrical channels. Thus they are 
all composed of 2 channels, no mathematical bias between the zones is introduced. All advanced 
methods above-mentioned have been tested for this complex case. Figures 6 and 7 illustrate the 
optimized burnup and channel power distributions which were obtained. For more details on all 
the results, refer to [7]. On the left hand-side of those figures, the results for the QLP are presented; 
the right hand-side gives the difference in percent between MS method and MM method compared 
to QLP results. We just want to stress out that with such a fine and detailed case in terms of burnup 
zones, one can achieve a very flat power distribution. Moreover, the 3 methods give very similar 
results. The computations requirements are roughly about the same for all approaches: between 
50 to 120 time-average flux calculations and a similar number of gradient set calculations. 
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Figure 6: Distribution of the burnup in the 190-zone case

be reproduced here. However, the important fact to notice was that within approximately 10 outer
iterations (see algorithm in Figure 2), the optimum was found for an optimization problem with 3
burnup zones and 16 different sizes of adjusters. The OPTEX code is really fast and converges on
very similar configurations regardless of the initial guess in this case of average complexity.
Starting in 2005, more advanced mathematical programming method were introduced in OPTEX
[7, 13]. The penalty and augmented lagragien methods were included in different general algo-
rithms and approaches to optimize the fuel management problem. Indeed, each mathematical
programming method has pros and cons. Several combinations of these methods were presented:
the quasilinear programming (QLP), the multistep method (MS) and the mixed method (MM).
Very complex optimization case with 190 burnup zones on a CANDU-6 reactor was considered. In
this case, each burnup zone is composed of the two left/right symmetrical channels. Thus they are
all composed of 2 channels, no mathematical bias between the zones is introduced. All advanced
methods above-mentioned have been tested for this complex case. Figures 6 and 7 illustrate the
optimized burnup and channel power distributions which were obtained. For more details on all
the results, refer to [7]. On the left hand-side of those figures, the results for the QLP are presented;
the right hand-side gives the difference in percent between MS method and MM method compared
to QLP results. We just want to stress out that with such a fine and detailed case in terms of burnup
zones, one can achieve a very flat power distribution. Moreover, the 3 methods give very similar
results. The computations requirements are roughly about the same for all approaches: between
50 to 120 time-average flux calculations and a similar number of gradient set calculations.
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Figure 7: Distribution of the channel power in the 190-zone case 

5.2. Applications to the ACR700 

In the ACR700a reactor, the 22 cm wide fuel lattice cell is composed of a 43-pin bundle, as il-
lustrated on Figure 8a, with sligthly enriched uranium fuel, except for the central pin which is 
composed of natural uranium and dysprosium to guarantee a negative void reactivity. A front view 
of the simulated core is illustrated on Figure 8b, including 300 fuel channels, control rods (50% 
inserted, grey boxes), reflector (approximative round shape line) and the labels of the fuel channels. 
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Figure 8: ACR700 model for optimization. 

The two gradient-based approaches (MS and MM) have been applied successfully to the fuel man-

a ACRTM: Advanced CANDU reactor is trademark of AECL 
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Figure 7: Distribution of the channel power in the 190-zone case

5.2. Applications to the ACR700

In the ACR700a reactor, the 22 cm wide fuel lattice cell is composed of a 43-pin bundle, as il-
lustrated on Figure 8a, with sligthly enriched uranium fuel, except for the central pin which is
composed of natural uranium and dysprosium to guarantee a negative void reactivity. A front view
of the simulated core is illustrated on Figure 8b, including 300 fuel channels, control rods (50%
inserted, grey boxes), reflector (approximative round shape line) and the labels of the fuel channels.
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Figure 8: ACR700 model for optimization.

The two gradient-based approaches (MS and MM) have been applied successfully to the fuel man-

a ACRTM: Advanced CANDU reactor is trademark of AECL
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agement problem of the ACR700 for 7 and 150 burnup zone cases [14]. The ACR700 case is 
introduced to illustrate an application of the TABU search in the fuel management. 
The tabu search method has been used to optimize the average exit burnup distribution for the 
ACR700 in the case of 7 burnup zones. A case where the fuel enrichment was considered as an 
additional parameter has also been studied. The fuel enrichment is fixed after the first optimization 
study. The burnup zones are represented on Figure 8c. 
The implemented tabu search method was tested using several analytical functions, that were re-
placing the double-line box in Figure 4. This gave us confidence and experience in our algorithm, 
especially experience on the automatic adjustments of the exploration and intensification radii (see 
[14]). Evaluation of the objective function in these calculations is done within few basic numerical 
operations, and the total optimization process is around one minute. Each analytical optimization 
problem resolution were repeated 100 times to give statistics on the reliability of the algorithm 
[14]. 
For the CANDU fuel management optimization problem, we have also proceeded with a statistical 
approach. Unfortunately, the 3D flux distribution in the reactor core (see figure 1) is not an analytic 
function, and it takes from several seconds to minutes with the time-average model to evaluate the 
objective function depending on the required discretization. As shown in the last columns of Tables 
1 and 2, the number of flux calculations is relatively high. A few hours to one day is needed to 
perform one optimization using the tabu search on a real ACR reactor for 7 burnup zones. It is 
therefore not an option to perform 100 optimization resolutions just to get a statistical point of 
view, especially when we wanted to test different optimization parameters. The number of trials 
has been limited to 3. We cannot say that a statistics can be obtained from these results, but if the 
results are consistent between the 3 tests, one can say that a good tendency is obtained. The results 
of the 3 tests are given in Tables 1 and 2 where Bi represents the average exit burnup in zone i 
given in GWd/t. 
In Tables 1 and 2, Nimx represents the number of successive iterations without amelioration of 
the best estimate before convergence. Nripdx is the number of successive iterations without finding 
a promising area before exploration radii are automatically adjusted. The last important option 

Nred,max is the maximum number reduction of the radii before they get small enough to reach con-
vergence. The burnup distributions can be found in reference [8]. The two significant observations 
are that the 3 trials do not always end up giving the same results, and that the number of TA flux 
calculations (column q) is huge, a few thousands flux calculations. The number of flux calcula-
tions, i.e. the number of objective function evaluation is actually similar for the fuel management 
problem and for the analytical problems with the same level of difficulty. 
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Table 1: Average exit burnup optimization with Nimx=50 

Nnpdx=5
B1 B2 B3 B4 B5 B6 B7 Fc

26.88 26.97 27.76 24.41 15.93 17.61 18.31 4.4793 4449 
26.98 27.12 27.57 24.16 14.43 19.85 26.95 4.5140 4684 
26.96 27.23 27.33 23.96 14.91 21.25 15.85 4.4964 4954 

N npdx=14 

B1 B2 B3 B4 B5 B6 B7 Fc 0 
27.43 26.99 27.41 24.18 17.76 14.66 14.69 4.5151 4837 
27.44 27.03 27.40 24.16 16.77 15.75 19.93 4.4870 4677 
27.31 27.17 27.28 24.01 15.46 18.58 21.99 4.4759 4693 

Table 2: Average exit burnup optimization with Nimx=200 

Nnpdx=5

B1 B2 B3 B4 B5 B6 B7 Fc
27.02 27.14 27.44 24.05 15.44 19.59 17.78 4.4723 3935 
26.69 26.95 28.02 24.36 15.31 19.45 16.36 4.4907 4915 
27.23 27.18 27.30 24.00 15.25 19.18 21.65 4.4781 6058 

N npdx=14 

B1 B2 B3 B4 B5 B6 B7 Fc 0 
27.40 27.13 27.31 24.07 15.43 17.71 25.94 4.4914 8460 
27.17 27.14 27.35 24.04 15.92 18.59 16.86 4.4687 7855 
27.52 27.10 27.28 24.14 16.31 16.09 23.19 4.4908 10165 

6. CONCLUSIONS 

The CANDU fuel management optimization problem was efficiently solved by Daniel Rozon and 
his students using the generalized adjoint formalism implemented in standard mathematical pro-
gramming methods. We have summarized here the theoretical basis of fuel management and res-
olution methods, the latest approaches of optimization and results as obtained using the OPTEX 
code. Daniel Rozon's imagination and intelligence always challenge the reactor physics codes and 
forces OPTEX to always exceed his expectations. 
The CANDU fuel management optimization problem is an evolving problem as the CANDU re-
actor design changes and the constraints requirements become more stringent on the problem as 
the coolant void reactivity constraint. Daniel Rozon has always looked to further optimize fuel 
management and CANDU operation as it directly impacts on the reactor design and on the fuel 
cost. We can just hope that his work will be pursued in Canada. 
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Nnpdx=5

B1 B2 B3 B4 B5 B6 B7 FC φ
26.88 26.97 27.76 24.41 15.93 17.61 18.31 4.4793 4449
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The CANDU fuel management optimization problem was efficiently solved by Daniel Rozon and
his students using the generalized adjoint formalism implemented in standard mathematical pro-
gramming methods. We have summarized here the theoretical basis of fuel management and res-
olution methods, the latest approaches of optimization and results as obtained using the OPTEX
code. Daniel Rozon’s imagination and intelligence always challenge the reactor physics codes and
forces OPTEX to always exceed his expectations.
The CANDU fuel management optimization problem is an evolving problem as the CANDU re-
actor design changes and the constraints requirements become more stringent on the problem as
the coolant void reactivity constraint. Daniel Rozon has always looked to further optimize fuel
management and CANDU operation as it directly impacts on the reactor design and on the fuel
cost. We can just hope that his work will be pursued in Canada.
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