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Abstract 

An important contribution of Prof. Daniel Rozon to research is related to the introduction and use of 
Generalized Perturbation Theory (GPT) in reactor physics. This approach was first reported in 1977, 
in the context of equilibrium refueling optimization for CANDU reactors. The combination of GPT 
and Mathematical Programming led to the OPTEX research project, still active thirty years later. 
Today, GPT is implemented in many important reactor physics codes still in development at Ecole 
Polytechnique. It is available in DONJON for full-core analyses, mainly as a support for OPTEX. It 
is also available in DRAGON where it is currently used to evaluate the sensitivities of global or 
local system parameters to basic cross-section data or isotopic concentration that are required for 
uncertainty calculations. 

1. Introduction 

Generalized Perturbation Theory (GPT) is a fundamental approach in reactor physics and in nuclear 
data processing. One of the useful features of GPT is its ability to predict the combined effect of 
several perturbations on the characteristics of a system as a linear superposition of the effects of 
each of the perturbations. In addition to well-known classical perturbation method, dedicated to the 
prediction of the effective multiplication factor, a considerable use is being made of GPT, dealing 
with variations of any ratio of functionals, linear or bilinear, of the flux and/or flux adjoint. The 
initial introduction of GPT in reactor physics was proposed in two fundamental papers of G. C. 
Pomraning describing the perturbation of a source and eigenvalue equation, respectively.[1,2] It is 
worth noting that the perturbation of an eigenvalue equation leads to a fixed source eigenvalue 
problem, a type of problem with very specific and unusual characteristics. Another well-known 
contributor of GPT is reactor physics is W. M. Stacey in 1972.[3] 

Back in 1976, Daniel Rozon was leading a team of graduate students and research associates for the 
development of optimization techniques related to the fuel management of CANDU reactors. At this 
time, the research team was puzzled by the failure to converge of the optimization process. A simple 
1D prototype based on GPT was proposed as a possible fix to ensure convergence. The OPTEX 
approach was then developed as the application of GPT and Mathematical Programming to the 
equilibrium refuelling optimization in CANDU reactors. The OPTEX approach was first reported in 
1977 [4] and has been developed and applied in the subsequent years to increasingly complicated 
situations.[5-8] An overview of OPTEX developments is the subject of a specific presentation at 
this meeting. [9] 

More recently, a new research axis was initiated to develop tools for sensitivity and uncertainty 
methodology inside the DRAGON framework.[10-13] The goal of this research was to implement 
in DRAGON a tool to produce the sensitivities of a general system characteristics to constituent 
cross-section data and isotopic concentrations. These sensitivities can be coupled with covariance 
data to propagate through the code the uncertainties in the evaluated nuclear data.[14] 
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In Section 2 of this paper we will discuss the use of general perturbation theory for reactor 
optimization studies as applied in the OPTEX code. This will be followed in Section 3 by a 
description of how this technique has been applied to sensitivity and uncertainty calculations in 
DRAGON. Finally we will conclude. 

2. GPT for optimization studies 

System design in reactor physics involves a number of system characteristics that are function of 
control or decision variables. Exit irradiation and fuel enrichment in a reactor zone are example of such 
control variables. Zonal power factors, fuel cost per megawatt, adjuster reactivity weight and effective 
multiplication factor of the reactor are examples of system characteristics. The goal of an optimization 
procedure is to adjust the control variables in such a way as to optimized a single system characteristics 
while maintaining other system characteristics equal, above or below reference values. 

In reactor physics studies, many system characteristics are of the form 

R= J dpF[0(p),i(p)] 

where p stands for the phase space variables, and F is an explicit function of the flux 0(p) and of I 
independent system variables: 

)(00) = (o),K 

The system equation governing the neutron flux for a reactor in a critical system takes the form 

[A(p) + A(p)B(p)]0(p)= 0 

where in diffusion theory A(p) contains both the neutron diffusion and removal operator, B(p) is the 
fission operator and A,(p)=1IKeff(p) is the eigenvalue of the problem. The standard optimization 

process then consists in selecting the optimal value of R from tables Rpert (X(p)+8X(p)) obtained with 

multiple perturbations 8X(p) in the system variables X(p). 

Generally, the tabulation of Rpert(X(p)+ 8X(p)) implies that multiple solutions of the system equation 

covering the available space for X(p) must be generated. On way to simplify this evaluation is to use a 
GPT formulation where one assumes that Rpert(X(p)+8X(p)) can be approximated by first order 

functional Taylor series expansion around a reference value [15] 

Rpert0414 8X(p)) = R(X(p)) + 8R

where 

8R =if dp (°)  8X,(p)+ 0(82 X). 
p C X  1 

Here will present two basic approaches to determine the first order variation 8R81. 
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2.1 The explicit approach 

In this approach, the flux variations introduced by the perturbations are treated explicitly. These 
perturbations are the result of a variation in the control variables X(p). 

Let K(77,p) be the variation in the neutron flux distribution at phase space position 17 resulting from 
the variation of the control variable Xi at p: 

tv, (77,A= g0( 77) 
(p) 

Using this equation, the expression for oRe5r becomes 

SF 
oR1=± f dp[ gF  + c117  K(77,P1 8Xi(P) 

(P) j=1 p 61,( 
r 

i 7, 610(77) 

where the distribution im(77,p) is the solution of a direct fixed source eigenvalue equation written as 

7[A(17)+ 2,(17)B(17)1K(17,p)= S 4 x(17) + .1,(17) exclB(7 Go-) )+oil,(77) 
(p)B(77)i I 0(77). 

In this equation, the flux distribution 0(77) and fundamental eigenvalue 2,(17) are the known solution of 
the eigenvalue equation corresponding to the reference—or non-perturbed— system. The operator on the 
LHS is singular and, for a solution to exist, the RHS must be orthogonal to the fundamental adjoint 
0*(77) of the reference system that satisfies 

[4* (p)+ 2,(p)B* (Jo)]** (p) = 0 

where the operators A*(p) and B* (p) are the adjoints of operators A(p) and B(p). A unique solution 
of the fixed source eigenvalue equation can be obtained by decontaminating tgi(77,p) using the 
fundamental adjoint 0*(17). 

2.2 The implicit approach 

In cases where R is a linear or bilinear ratio defined in term of the neutron flux 0(77), an alternative 
approach is possible. This approach, called the implicit approach, yields the same estimate for the 
variation in R, but requires the solution of a different number of fixed source eigenvalue equations. To 
avoid the necessity of solving fixed source eigenvalue equations for every control variable, the second 
term in the expression of Rpert (X(p) + 8X(p)) (oR r ) can be written in terms of an importance function 

(5X 

8R 
dP 

f 
oil(77) o  + B(77) 61(17) ( )110( )} 8 x(p) 81 f 1 

SF 
17r 
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Here, FR, is the solution of an adjoint fixed source eigenvalue equation defined as 

[A* (77) + 11,(77)B* (77)]r R(77) = 67
610(77) 

The importance function FR (77) can be interpreted as the contribution of an additional neutron at 77 to 
the value of the system characteristics R. It plays a role similar to that of the adjoint flux with regards 
to changes in the fundamental eigenvalue .1,, but related specifically to R because of the source term 

c/F 0 0(17) • 

In the context of the implicit approach, there is one fixed source eigenvalue equation to be solved for 
each system characteristics R to be controlled, regardless of the number of control variables. 

The efficiency of the GPT approach as a substitute to repeated direct calculations will depend on the 
number of fixed source eigenvalue equations to be solved for a given problem. Therefore, the choice 
between an implicit or an explicit approach can be significant to the applicability of GPT to the 
optimization problem. 

2.3 GPT in DONJON 

The use of GPT in DONJON is reminiscent of the 1977 implementation in OPTEX1. The GPT-related 
modules are used to construct the RHS of the fixed source eigenvalues equations (both the generalized 
direct and adjoint system equations) and then solve them over the full-core. Two specific modules are 
implemented in DRONON: 

DELTA: This module is used to compute the source of a fixed source eigenvalue equation 
corresponding to a set of unperturbed and perturbation system matrices. 

GPTFLU: This module is used to compute the solution to a fixed source eigenvalue problem 
corresponding to a set of unperturbed system matrices and sources vectors. It uses the full 
core diffusion solver of TRIVAC. 

The DELTA: module is mainly used for non-regression testing, since the code OPTEX, which call 
directly the GPTFLU: module of DONJON, contains dedicated modules for computing the source 
components required for optimization studies. 

3. GPT for sensitivity and uncertainty calculations 

Evaluation of the uncertainties in cell averaged and group condensed lattice cell properties is another 
domain of research where the use of GPT is of utmost importance. Assume that the uncertainties o in a 
given set of lattice properties 3c (temperature, densities, microscopic cross sections or isotopic 
concentrations) are statistical in nature (due to the experimental measurement process). We will 
suppose that these uncertainties are normally distributed around .Y. , meaning that 3c can be sampled 
from a probability density function of the form 

2 
1 

lx„ -i„)
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with , the sensitivity coefficient of functional  with respect to parameter : 
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The problem with this form is that  is very difficult to evaluate in the general case. However, using a 
first order GPT approach it can be approximated using 
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The solution in this case is even simpler and consists of 

1. Solve the transport for the flux using the reference values for 

 

r x  
2. Solve a series of transport equation for the generalized adjoints, each element corresponding to 

a source 

 

Qn  given by in equation (2) 
3. Evaluate the sensitivity coefficients using equation (4) and determine directly 

 

σR  using 
equation (3). 

The main advantage here is that there is no need for any statistical analysis including repetitive 
evaluations of perturbed functional. However the evaluation of 

 

N  generalized adjoints is still required.  
 

3.3 Example of application 

The problem we have considered is a PWR pin cell fueled with 3.9 % enriched uranium oxide. [14] 
The fuel and the coolant are respectively at a temperature of 600 K and 500 K respectively. Our 
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transport calculations were performed in DRAGON using the collision probability method on a cell 
subdivided into 5 regions (3 for the fuel, one for the cladding and one for the coolant) and a 69 group 
library. The flux distributions resulting from these calculations were then used to generate cell 
averaged and 2 group cross sections. The upper energy limit of the thermal group (group 2) was set at 
0.625 eV. 

The effect of uncertainties in both the fuel and coolant temperatures on the two group cell averaged 
absorption cross sections. The uncertainty in the coolant temperature also affects its density (the fuel 
density is not strongly affected by the fuel temperature). Here, we assumed that the coolant density 
varies linearly with temperature and that there is a complete correlation between the coolant density 
and temperature and no correlation between fuel and coolant temperature. In Table 1 and 2 the results 
of a direct statistical analysis, a statistical GPT approach and a deterministic GPT approach (1000 
simulations) are presented for the cell averaged fast and thermal absorption cross sections respectively 
when 6 T=5, 10 and 50 K. 

Table 1 Uncertainties in the fast absorption cross section. 

6 7, (K) az, (%) Direct 

statistical 

az, (%) GPT 

statistical 

az, (%) GPT 

deterministic 
5 0.11 0.11 0.11 
10 0.22 0.22 0.22 
50 1.17 1.15 1.10 

Table 2 Uncertainties in the thermal absorption cross section. 

6 7, (K) az, (%) Direct 

statistical 

a, (%) GPT 

statistical 

a, (%) GPT 

deterministic 
5 0.46 0.46 0.47 
10 0.90 0.90 0.93 
50 4.77 4.75 4.67 

As one can see, the deterministic evaluations yield very good results for c3-7, 10 K, the results being 
consistent with the statistical method (both the direct and GPT approach). For the case where 
crT = 50 K, the uncertainties in the absorption cross sections are underestimated by up to 7 %. The 
gain in computing time for the statistical GPT approach is near 3 while for the deterministic GPT 
method it reaches 10. 

4. Conclusion 

We have presented an overview of methodology based on GPT and developed at Ecole 
Polytechnique during the last thirty years. The origin of this development is a research project in 
fuel management of CANDU reactors, directed by Daniel Rozon. This technique is currently 
implemented in both our lattice cell DRAGON, where it is used for uncertainties propagation and 
perturbation calculations and in OPTEX for optimization studies. 
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Table 2  Uncertainties in the thermal absorption cross section. 
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5 0.46 0.46 0.47 
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As one can see, the deterministic evaluations yield very good results for 

 

σT ≤10 K , the results being 
consistent with the statistical method (both the direct and GPT approach). For the case where 

 

σT = 50 K, the uncertainties in the absorption cross sections are underestimated by up to 7 %. The 
gain in computing time for the statistical GPT approach is near 3 while for the deterministic GPT 
method it reaches 10. 

4. Conclusion 

We have presented an overview of methodology based on GPT and developed at École 
Polytechnique during the last thirty years. The origin of this development is a research project in 
fuel management of CANDU reactors, directed by Daniel Rozon. This technique is currently 
implemented in both our lattice cell DRAGON, where it is used for uncertainties propagation and 
perturbation calculations and in OPTEX for optimization studies. 
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