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Abstract

An important contribution of Prof. Daniel Rozon to research is related to the introduction and use of
Generalized Perturbation Theory (GPT) in reactor physics. This approach was first reported in 1977,
in the context of equilibrium refueling optimization for CANDU reactors. The combination of GPT
and Mathematical Programming led to the OPTEX research project, still active thirty years later.
Today, GPT is implemented in many important reactor physics codes still in development at Ecole
Polytechnique. It is available in DONJON for full-core analyses, mainly as a support for OPTEX. It
is also available in DRAGON where it is currently used to evaluate the sensitivities of global or
local system parameters to basic cross-section data or isotopic concentration that are required for
uncertainty calculations.

1. Introduction

Generalized Perturbation Theory (GPT) is a fundamental approach in reactor physics and in nuclear
data processing. One of the useful features of GPT is its ability to predict the combined effect of
several perturbations on the characteristics of a system as a linear superposition of the effects of
each of the perturbations. In addition to well-known classical perturbation method, dedicated to the
prediction of the effective multiplication factor, a considerable use is being made of GPT, dealing
with variations of any ratio of functionals, linear or bilinear, of the flux and/or flux adjoint. The
initial introduction of GPT in reactor physics was proposed in two fundamental papers of G. C.
Pomraning describing the perturbation of a source and eigenvalue equation, respectively.[1,2] It is
worth noting that the perturbation of an eigenvalue equation leads to a fixed source eigenvalue
problem, a type of problem with very specific and unusual characteristics. Another well-known
contributor of GPT is reactor physics is W. M. Stacey in 1972.[3]

Back in 1976, Daniel Rozon was leading a team of graduate students and research associates for the
development of optimization techniques related to the fuel management of CANDU reactors. At this
time, the research team was puzzled by the failure to converge of the optimization process. A simple
1D prototype based on GPT was proposed as a possible fix to ensure convergence. The OPTEX
approach was then developed as the application of GPT and Mathematical Programming to the
equilibrium refuelling optimization in CANDU reactors. The OPTEX approach was first reported in
1977 [4] and has been developed and applied in the subsequent years to increasingly complicated
situations.[5-8] An overview of OPTEX developments is the subject of a specific presentation at
this meeting.[9]

More recently, a new research axis was initiated to develop tools for sensitivity and uncertainty
methodology inside the DRAGON framework.[10-13] The goal of this research was to implement
in DRAGON a tool to produce the sensitivities of a general system characteristics to constituent
cross-section data and isotopic concentrations. These sensitivities can be coupled with covariance
data to propagate through the code the uncertainties in the evaluated nuclear data.[14]
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In Section 2 of this paper we will discuss the use of general perturbation theory for reactor
optimization studies as applied in the OPTEX code. This will be followed in Section 3 by a
description of how this technique has been applied to sensitivity and uncertainty calculations in
DRAGON. Finally we will conclude.

2. GPT for optimization studies

System design in reactor physics involves a number of system characteristics that are function of
control or decision variables. Exit irradiation and fuel enrichment in a reactor zone are example of such
control variables. Zonal power factors, fuel cost per megawatt, adjuster reactivity weight and effective
multiplication factor of the reactor are examples of system characteristics. The goal of an optimization
procedure is to adjust the control variables in such a way as to optimized a single system characteristics
while maintaining other system characteristics equal, above or below reference values.

In reactor physics studies, many system characteristics are of the form

= | doFIg(0). X (0)]

P
where p stands for the phase space variables, and F is an explicit function of the flux ¢(p) and of I
independent system variables:

X(p)={X(P) K . X,(p)}.
The system equation governing the neutron flux for a reactor in a critical system takes the form
[A(p) + A(p) B(p)]¢(0) =0

where in diffusion theory A(p) contains both the neutron diffusion and removal operator, B(p) is the
fission operator and A(p) =1/K (p) is the eigenvalue of the problem. The standard optimization

process then consists in selecting the optimal value of R from tables Rpert()l((p) +é>'((p)) obtained with
multiple perturbations é)'((p) in the system variables )I((p).

Generally, the tabulation of Rpen()l((p) +é)'((p)) implies that multiple solutions of the system equation

covering the available space for X(p) must be generated On way to simplify this evaluation is to use a
GPT formulation where one assumes that R t(X(p) +5X(p)) can be approximated by first order

per

functional Taylor series expansion around a reference value [15]

Rpert(k(p) + 55((,0)) = R()I((p)) + a:{»E
where

5X,(0) +O(5°X).

Zjdp

i=l p

Xi(p)

Here will present two basic approaches to determine the first order variation &R r.
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2.1 The explicit approach

In this approach, the flux variations introduced by the perturbations are treated explicitly. These
perturbations are the result of a variation in the control variables X(p).

Let y;(7,p) be the variation in the neutron flux distribution at phase space position 7 resulting from
the variation of the control variable X, at p:

ap(n)

l//i(n,p)=éxi(p)-

Using this equation, the expression for (R r becomes

R ZIZIdP[

i=1l p
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where the distribution (7, p) is the solution of a direct fixed source eigenvalue equation written as

A(m) B(m) 5/1(77)
0 X)X (o)

[A() + A(m) B(m) ] wi(m.0) = - { B( )J é(n).

In this equation, the flux distribution ¢(77) and fundamental eigenvalue A(7) are the known solution of

the eigenvalue equation corresponding to the reference—or non-perturbed— system. The operator on the
LHS is singular and, for a solution to exist, the RHS must be orthogonal to the fundamental adjoint
¢* (n) of the reference system that satisfies

[A" (D) + AP B (D) () =0

where the operators A"(p) and B"(p) are the adjoints of operators A(p) and B(p). A unique solution
of the fixed source eigenvalue equation can be obtained by decontaminating (7, 0) using the
fundamental adjoint ¢* (7).

2.2 The implicit approach

In cases where R is a linear or bilinear ratio defined in term of the neutron flux ¢(7), an alternative
approach is possible. This approach, called the implicit approach, yields the same estimate for the
variation in R, but requires the solution of a different number of fixed source eigenvalue equations. To
avoid the necessity of solving fixed source eigenvalue equations for every control variable, the second
term in the expression of Rpert(x(p) +5X(p)) (a’R ) can be written in terms of an importance function

— [ dy R(n){ @(((’7)) A1) j((”)) ;’f((”)) (n)}zﬁ(n)}wm.

R =i}[dp%éx
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Here, I'r, is the solution of an adjoint fixed source eigenvalue equation defined as

. . oF
A" () + A(1) B =
[A" (1) + A1) B (1) | T (m) 2500

The importance function I';(77) can be interpreted as the contribution of an additional neutron at 7 to
the value of the system characteristics R. It plays a role similar to that of the adjoint flux with regards
to changes in the fundamental eigenvalue A, but related specifically to R because of the source term
F 13p(n).

In the context of the implicit approach, there is one fixed source eigenvalue equation to be solved for
each system characteristics R to be controlled, regardless of the number of control variables.

The efficiency of the GPT approach as a substitute to repeated direct calculations will depend on the
number of fixed source eigenvalue equations to be solved for a given problem. Therefore, the choice
between an implicit or an explicit approach can be significant to the applicability of GPT to the
optimization problem.

2.3 GPT in DONJON

The use of GPT in DONJON is reminiscent of the 1977 implementation in OPTEX1. The GPT-related
modules are used to construct the RHS of the fixed source eigenvalues equations (both the generalized
direct and adjoint system equations) and then solve them over the full-core. Two specific modules are
implemented in DRONON:

DELTA: This module is used to compute the source of a fixed source eigenvalue equation
corresponding to a set of unperturbed and perturbation system matrices.

GPTFLU: This module is used to compute the solution to a fixed source eigenvalue problem
corresponding to a set of unperturbed system matrices and sources vectors. It uses the full
core diffusion solver of TRIVAC.

The DELTA: module is mainly used for non-regression testing, since the code OPTEX, which call
directly the GPTFLU - module of DONJON, contains dedicated modules for computing the source
components required for optimization studies.

3. GPT for sensitivity and uncertainty calculations

Evaluation of the uncertainties in cell averaged and group condensed lattice cell properties is another
domain of research where the use of GPT is of utmost importance. Assume that the uncertainties 5 in a
given set of lattice properties X (temperature, densities, microscopic cross sections or isotopic
concentrations) are statistical in nature (due to the experimental measurement process). We will
suppose that these uncertainties are normally distributed around X, meaning that X can be sampled
from a probability density function of the form

1 )

p(Xn) = O"\/E
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where X is the reference value of parameter x, € x (N elements). The uncertainty in the functional R
(a cell averaged and group condensed macroscopic cross section for example) that depends on X, can
be evaluated using

o =\/ﬁZ(R(§i) ~R(h)

with X; a set of values for X drawn (K times) from the normal distribution using a random number
generator. This means that in order to evaluate o, one must first solve K times the system equation
governing the neutron flux using transport or diffusion theory. In order to obtain reasonable statistics
for o large values of K >1000 are generally required.[14]

As we will now see, the GPT approach can be used to accelerate substantially this calculation assuming
& has the form

| P, (0)4(0)

T TRa)

P

where Z_is the macroscopic cross section for reaction type v and F an operator that projects the
complete phase space to a specific sub phase space (homogenized region and condensed group

selected).
3.1 The statistical GPT approach

We can first use the GPT technique to accelerate the evaluation of Ri ¥} using

rR,k(p>xi,k[%ﬁ’:)+z(p)“;A—(h’;)

L PE (X)) -5, (%)
mﬁ&'_idp TP >

R(;(i) = ﬁ()I(|) + dQ()Iﬂ)

} #(p) (1)

where T, (p) is the generalized adjoint defined as the solution to the following transport equation
(A" +B)=Q

with S the adjoint source associated with the functional Rix.}. The procedure to obtain o in this case
follows:
1. Solve the transport for the flux using the reference values for x
2. Solve a series of transport equations for the generalized adjoints, each element corresponding to
asource Q, given by (N)
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P
3. Select X statistically from the probability distribution function and evaluate SRy using

equation (1). Repeat K times until a sufficient large number of perturbations have been
considered.
4. Perform a statistical analysis of SR; and determine evaluate o.

Typically this technique will be faster than solving K times the transport equation since the flux and
adjoints can be computed before the analysis starts. However, N evaluations of equation (1) are still
required as well as a final statistical analysis of the results.

@)

3.2 The deterministic GPT approach

For the general case where o, is the variance of parameter x, =X and c_, the covariance factor
between x,_ and x_, then the variance o in & can be computed using

oo o8] p, (a )

with &;, the sensitivity coefficient of functional & with respect to parameter x:

m )

o Ko R
R &,

The problem with this form is that &7 is very difficult to evaluate in the general case. However, using a
first order GPT approach it can be approximated using

sp =X x,(p) A B
7o p¢<)& —()(nz j¢() @

The solution in this case is even simpler and consists of
1. Solve the transport for the flux using the reference values for X
2. Solve a series of transport equation for the generalized adjoints, each element corresponding to
asource Q, given by in equation (2)
3. Evaluate the sensitivity coefficients using equation (4) and determine directly o, using
equation (3).
The main advantage here is that there is no need for any statistical analysis including repetitive
evaluations of perturbed functional. However the evaluation of N generalized adjoints is still required.

3.3 Example of application

The problem we have considered is a PWR pin cell fueled with 3.9 % enriched uranium oxide. [14]
The fuel and the coolant are respectively at a temperature of 600 K and 500 K respectively. Our
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transport calculations were performed in DRAGON using the collision probability method on a cell
subdivided into 5 regions (3 for the fuel, one for the cladding and one for the coolant) and a 69 group
library. The flux distributions resulting from these calculations were then used to generate cell
averaged and 2 group cross sections. The upper energy limit of the thermal group (group 2) was set at
0.625 eV.

The effect of uncertainties in both the fuel and coolant temperatures on the two group cell averaged
absorption cross sections. The uncertainty in the coolant temperature also affects its density (the fuel
density is not strongly affected by the fuel temperature). Here, we assumed that the coolant density
varies linearly with temperature and that there is a complete correlation between the coolant density
and temperature and no correlation between fuel and coolant temperature. In Table 1 and 2 the results
of a direct statistical analysis, a statistical GPT approach and a deterministic GPT approach (1000
simulations) are presented for the cell averaged fast and thermal absorption cross sections respectively
when o =5, 10 and 50 K.

Table 1 Uncertainties in the fast absorption cross section.

o (K) o, (%) Direct o, (%) GPT o, (%) GPT
statistical statistical deterministic

5 0.11 0.11 0.11

10 0.22 0.22 0.22

50 1.17 1.15 1.10

Table 2 Uncertainties in the thermal absorption cross section.

o; (K) o, (%) Direct o,. (%) GPT o, (%) GPT
statistical statistical deterministic

5 0.46 0.46 0.47

10 0.90 0.90 0.93

50 4,77 4.75 4.67

As one can see, the deterministic evaluations yield very good results for o; <10 K, the results being
consistent with the statistical method (both the direct and GPT approach). For the case where

o; =50 K, the uncertainties in the absorption cross sections are underestimated by up to 7 %. The
gain in computing time for the statistical GPT approach is near 3 while for the deterministic GPT
method it reaches 10.

4. Conclusion

We have presented an overview of methodology based on GPT and developed at Ecole
Polytechnique during the last thirty years. The origin of this development is a research project in
fuel management of CANDU reactors, directed by Daniel Rozon. This technique is currently
implemented in both our lattice cell DRAGON, where it is used for uncertainties propagation and
perturbation calculations and in OPTEX for optimization studies.



31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec

5.

Acknowledgments

The authors would like to thank the National Science and Engineering Research Council of Canada for
providing its financial support for this research. The also acknowledge the exceptional contribution of
Daniel Rozon in the area of GPT development and applications.

6.
[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

References

G. C. Pomraning, “A Derivation of Variational Principles for Inhomogeneous Equations,"
Nucl. Sci. Eng., 29, 220 (1967).

G. C. Pomraning, “A Variational Principle for Eigenvalue Equations,” J. Math. Phys., 8, 149
(1967).

W. M. Stacey Jr., “Variational Estimates and Generalized Perturbation Theory for the Ratios
of Linear and Bilinear Functionals,” J. Math. Phys., 13, 1119 (1972).

D. Rozon and A. Hébert, “Perturbation Theory for Optimizing the Exit Irradiation in a Multi-
Zone CANDU Reactor,” paper presented at the 1977 Simulation Symposium on Reactor
Dynamics and Plant Control, Montréal, Canada, April 26-29, 1977.

D. Rozon, A. Hébert and D. McNabb, “The Application of Generalized Perturbation Theory
and Mathematical Programming to Equilibrium Refueling Studies of a CANDU Reactor,”
Nucl. Sci. Eng., 78, 211 (1981).

D. Rozon, “Optimization of in-Core Fuel Management in CANDU Nuclear reactors,” Ph. D.
Thesis, McMaster University, Canada, 1985.

D. Rozon and M. Beaudet, “Canada deuterium uranium reactor design optimization using
three-dimensional generalized perturbation theory,” Nucl. Sci. Eng., 111, 1 (1992).

R. Chambon, “Optimisation de la gestion du combustible dans les réacteurs CANDU refroidis
a I’eau légere,” Ph. D. Thesis, Ecole Polytechnique, Montréal, Canada, 2006.

D. Rozon, E. Varin, R. Chambon, “Fuel Management in CANDU Reactors: Daniel Rozon’s
Contribution,” 31* conference of the CNS, Montreal, May 24-27, 2010.

T. Courau, G. Marleau, “Adjoint and Generalized Adjoint Flux Calculations Using the
Collision Probability Technique”, Nucl. Sci. Eng., 141, 46-54 (2002).

T. Courau, G. Marleau, “Perturbation Theory for Lattice Cell Calculations”, Nucl. Sci., Eng.,
143, 19-32 (2003).

M. Assawaroongruengchot, G. Marleau, “Perturbation Theory Based on the Method of Cyclic
Characteristics”, Nucl. Sci. Eng., 157, 30-50 (2007).

M. Assawaroongruengchot, G. Marleau, “Multigroup Adjoint Transport Solution Using the
Method of Cyclic Characteristics”, Nucl. Sci. Eng., 155, 37-52 (2007).

M. Dion, G. Marleau, “Comparison of Probabilistic and Deterministic Error Propagation
Calculations in DRAGON”, M&C 2009, Saratoga Spring, NY, May 3-7, 2009.

A. Hébert, Applied Reactor Physics, Presses Internationales Polytechnique, ISBN 978-2-553-
01436-9, 424 p., Montréal, 2009. See http://www.polymtl.ca/pub/.



31st Annual Conference of the Canadian Nuclear Society May 24 - 27, 2010
34th CNS/CNA Student Conference Hilton Montreal Bonaventure, Montreal, Quebec



	Introduction
	GPT for optimization studies
	The explicit approach
	The implicit approach
	GPT in DONJON

	GPT for sensitivity and uncertainty calculations
	The statistical GPT approach
	The deterministic GPT approach
	Example of application

	Conclusion
	Acknowledgments
	References



