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Abstract 

The fitness for service assessment of pressure tubes requires demonstrating that there is 
sufficient margin against the rupture of the pressure tube. The CSA-Standard N285.8 specifies a 
lower bound fracture toughness (K s ,) for zirconium alloy that would provide adequate protection 
against fracture. A probabilistic approach to establish the lower bound of K, is desirable, since it 
can account for variability associated with K, a population of pressure tubes. The paper presents 
a probabilistic interpretation of lower bound IC,, which encompasses both aleatory and epistemic 
uncertainties. The paper proposes a new method to update the lower bound IC,, as new data 
become available from the testing of surveillance pressure tubes removed from any reactor. The 
main advantage of the proposed approach is that it provides a practical, risk-informed basis for 
fracture toughness assessment of the pressure tube. 

1. Introduction 

1.1 Background 

The fracture toughness (Ks) of zirconium alloy is an important material property that provides 
protection against fracture of pressure tubes. It plays a key role in assuring the leak-before break 
in the event of through wall cracking of a pressure tube. The fracture toughness exhibits 
considerable variability in a population of pressure tubes due to changes in microstructure, 
texture, chemical impurities and the extent of irradiation. The variability in K, is evident from 
fracture toughness data obtained through burst testing of samples taken from surveillance 
pressure tubes removed from various CANDU reactors over past several years [1]. 

In a deterministic assessment method, so long as fracture toughness values obtained from a 
surveillance pressure tube exceed a specified lower bound, the assessment is considered 
successful. The CSA Standard N285.8 [2] specifies deterministic the lower bound K, as a 
function of the temperature: 

K 
=127 + 0.30T (T 150°C) 

72 (T > 150°C) 
MPaVm (1) 

A deterministic approach is somewhat restrictive, as it done not account for variability associated 
with IC,, which in principle should be modelled as a random variable. Therefore, the industry has 
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27 0.30 ( 150 C)

   
72 ( 150 C)c

T T
K

T
+ ≤ °⎧

= ⎨ > °⎩
  MPa√m (1) 
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been moving towards a probabilistic approach to establish a lower bound Kc. A probabilistic 
lower bound can be defined as a percentile in the lower tail of the distribution of Kc 
corresponding to a probability level ranging from 1% to 10%. The percentile level is selected 
based on industry's consensus about the performance and safety requirements. 

1.2 Proposed Definition of the Probabilistic Lower Bound 

P% 

q% 

x (MPa m1/2) 

Figure 1: Proposed definition of the probabilistic lower bound of fracture toughness 

The estimation of probabilistic lower bound has its own challenges. The reason is that typically a 
small sample of data is the basis for fitting the distribution function and computing its 
parameters, which introduces sampling (or epistemic) uncertainty. In other words, a sample 
estimate of a percentile value is also a random variable, so that lower bound should correspond 
to a high level of confidence. 

In general, a lower bound can be defined as Xqip, which is qt ' percentile of X estimated at (1-p)th
confidence level as shown in Figure 1. The fracture toughness in the population is expected to 
exceed the lower bound Xqip with probability (1 - q). With reference to a sample estimate of 
lower bound, this is expected to be true with (1 - p) probability. As a matter of illustration, we 
propose 5th percentile (q = 5%) of Kc at 95% confidence level (p = 5%). 

Because of sampling uncertainty associated with a lower bound estimate, a method is needed to 
update the confidence associated with it, as new data become available from the testing of 
surveillance pressure tubes removed from any reactor. Although new data are mostly expected to 
exceed the lower bound, there is a possibility that a few data points can be lower than the bound. 
It is reasonable, since a random variable can take any value in its entire range. Thus, a few low 
values of Kc would not invalidate the lower bound, though it would revise the confidence 
associated with it. The selected lower bund should be revised, only when the associated 
confidence level is severely eroded due to new observations, 
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1.3 Research Objectives 

The objectives of this papers are to (1) propose defmition and estimation of the lower bound, (2) 
develop a Bayesian method to update the lower bound, and (3) evaluate sensitivity of the lower 
bound to potential new values of Kc. 

The paper is organized as follows. The next Section summaries the proposed probabilistic 
approach. A case study based on a sample of Kc is presented in Section 3 to illustrate the 
proposed method. Conclusions of this study are presented in Section 4, and mathematical details 
of the formulation are given in the Appendix. 

2. Probabilistic Model 

2.1 Data 
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Figure 2: Illustration of a sample of fracture toughness data 

For illustrative purposes, the paper utilizes a sample of 47 fracture toughness (Ks) values 
obtained from burst testing (at 250°C) of samples taken from irradiated pressure tubes (Pandey 
and Radford 2008). The sample ranges from 74 to 176 MPa-Vm with sample mean and sample 
standard deviation of 131 and 26 MPagm, respectively (Figure 2a). The sample values are 
plotted on the Normal probability paper in Figure 2(b), which shows that the normal distribution 
provides a good fit to the data. 

A probabilistic lower bound of Kc is defined in terms of qth percentile of the distribution. 
Considering the normal distribution model for Kc, the 1%, 2.5% and 5% percentiles are 
computed as 70.5, 80 and 88.2 MPagm, respectively. The deterministic lower bound 72 MPagm 
specified in CSA N285.8 is 1.16% percentile of the distribution. 
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and Radford 2008). The sample ranges from 74 to 176 MPa√m with sample mean and sample 
standard deviation of 131 and 26 MPa√m, respectively (Figure 2a). The sample values are 
plotted on the Normal probability paper in Figure 2(b), which shows that the normal distribution 
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2.2 Basic Approach 

The fracture toughness is treated as a random variable, X, which is normally distributed with the 
probability density function (PDF) given as 

f 
1  

(x) =  ,— exp[ 
2a 

— (x 
—,u)2 

LI
Nan-0- 

A qth percentile of the distribution, which can serve as a lower bound of K, , is defined as 

F(xd= P[X < xq 1 0, 6 ] = q or xq = F-1
(4) 

(2) 

(3) 

where F(x) denotes the cumulative distribution of X If the mean (u) and standard deviation (a) 
of K, were known precisely, the percentile value can be taken as a fixed (non-random) value. 
However, the crux of the problem is that sample estimates of p and a are affected by the 
sampling or epistemic uncertainty [3]. In other words, p and a should also be treated as random 
variables, such that the percentile value becomes a function of random variables. The 
distribution of the percentile value would provide a confidence measure. 

2.3 Formulation 

In the proposed model, the mean and variance of fracture toughness are treated as random 
variables and a method is developed to update the distribution using new data. The PDF of K, 
(Eq. 2) is rewritten in terms of a new parameter called precision (r), which is defined as the 
reciprocal of the variance, r = (1/o-)2. Thus, 

f(x)=1 exP [—;(x — P )211 (4) 

Firstly, the precision is modeled as a gamma distributed variable as [4] 

f (p) = fi , ra -1 exp[— fir] (5) 

Note that a and )6 are distribution parameters. The PDF of the standard deviation (a) can be 
derived from Eq. (5) as 

f (0- ) = 
dr = I \ -(2a+D _ (6) 
da

2/3a)Va f (r) 
7) 

cxp( fli a 2) 
r( 

The expected value and variance of a are given as 

E(Cr) - r(ar(-0,1)/2) \d/T3 VAR(o-)= 
[E(a)]2 

(7) and afi_i 
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 2( ) exp ( )
22

f x xτ τ μ
π

⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (4) 

Firstly, the precision is modeled as a gamma distributed variable as [4] 

 
( ) [ ]1( ) expf
α

αβτ τ βτ
α

−= −
Γ

 (5) 

Note that α and β are distribution parameters. The PDF of the standard deviation (σ) can be 
derived from Eq. (5) as  

 ( ) ( ) ( ) ( ) ( )(2 1) 2d 2 exp
d

f f
α

ατ βσ τ σ β σ
σ α

− += = −
Γ

 (6) 

The expected value and variance of σ  are given as 

 ( ) ( )
( )

1/ 2
E

α
σ β

α
Γ −

=
Γ

 and ( ) ( ) 2
VAR E

1
βσ σ

α
= − ⎡ ⎤⎣ ⎦−

 (7) 
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The conditional distribution of mean given the precision is modeled as normally distributed 
variable [4]: 

f  (ti 

I 

ir) ( r y/2 exp r ryl ip 60,)21]

‘j r [ 2 
(8) 

Here 2 and 0 are distribution parameters. The marginal distribution of the mean is obtained as 

f (P) = if (PI r)f (r)ch- = 
Jr[a ± Y2][1+ 

(p- 

02 

-1-(2a+ot 2 

0 

VWET (a)  213/2 j (9) 

Thus, p follows a t-distribution with 2a degrees of freedom. The expectation and variance of p 
are given as 

E(p)=B and VAR (// ) = /3
(a —1)2 

(10) 

The marginal distribution of X can be obtained by integrating the conditional distribution of X, 
Eq. (3), over the distributions of p and r in the following manner [5]: 

f(x)=Iff(x1p,r)f(p I Of(r)dpar (11) 

This leads to a t-distribution for Xgiven as 

-1-(2a+1)/2 

f(x)=
V1+1/11r[a ± Y2] 1+ (x - 0) 2 I 

(12) 
.N167(1-' (a) 2) 6 1(1+1/2)] 

The qth percentile, Xq, is computed from mean and standard deviation as 

Xq = p + Iv- or Xq = p + kq /Nri- (13) 

where kq = 0 -1(q) is a qth percentile of the standard normal distribution with denoted as 00. 
Since the joint distribution of p and r, f ( u ,r)= f (ali-) f (r) , is defined from Eqs. (5) and (8), a 

trick is to transform this into a new joint distribution in terms of the qth percentile as f (X e r) . 

The transformation is based on Eq. (13) as p = Xq — kg /Nri- , and the final result is obtained as 

r a-% I 

112)6±2(Xq—e-10/17)2-1 1_11 

f ( xg,r )  
c exp I , — 

2 

where 

(14) 
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, | ( )d df x f x f f
μ τ
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(2 1) / 221
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1
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x
f x

α
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− +
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The qth percentile, Xq, is computed from mean and standard deviation as  

 q qX kμ σ= +  or q qX kμ τ= +  (13) 

where kq = Φ-1(q) is a qth percentile of the standard normal distribution with denoted as Φ(⋅). 
Since the joint distribution of μ and τ, ( , ) ( | ) ( )f f fμ τ μ τ τ= , is defined from Eqs. (5) and (8), a 
trick is to transform this into a new joint distribution in terms of the qth percentile as ( , )qf X τ . 

The transformation is based on Eq. (13) as q qX kμ τ= − , and the final result is obtained as 

 ( ) ( )
1

2 2
, exp 2

2q q qf x x k
c

ατ ττ β λ θ τ
− ⎧ ⎫⎡ ⎤= − + − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 (14) 

where 
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c 

2 

j r,(1 j r,(6)(13)„, 

2 

The marginal PDF of Xq can be computed by integrating out r from Eq. (14). This completes the 
derivation of the distribution of a q t'  percentile of the fracture toughness. A method based on 
Bayes' theorem to update these distributions is presented in Appendix A of the paper. 

2.4 Illustration 
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Figure 3: Prior distributions of mean (u) and standard deviation (a) of K 

Formulation given in the previous section is illustrated here using the data described in Section 
2.1. Firstly, we consider mean (u) of the toughness as a random variable (Eq. 9). The average 
and coefficient of variation (COV) of the mean toughness are taken as E(µ) = 120 MPa'Im and 
COV = 0.1. The standard deviation of Kc is also random (Eq. 6) with an average E(o-) = 30 
MPa'Im and COV = 0.6. Using this data, four parameters of the distributions of p and a are back 
calculated using Eqs. (7) and (10), and the results are: a = 1.77, )6 = 943.98, 0 = 120.0 and 2 = 
8.50. Using these parameters, the prior distributions of p and o- are plotted in Figure 3. 
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Formulation given in the previous section is illustrated here using the data described in Section 
2.1. Firstly, we consider mean (μ) of the toughness as a random variable (Eq. 9). The average 
and coefficient of variation (COV) of the mean toughness are taken as E(μ) = 120 MPa√m and 
COV = 0.1. The standard deviation of Kc is also random (Eq. 6) with an average E(σ) = 30 
MPa√m and COV = 0.6. Using this data, four parameters of the distributions of μ and σ are back 
calculated using Eqs. (7) and (10), and the results are: α = 1.77, β = 943.98, θ = 120.0 and λ = 
8.50. Using these parameters, the prior distributions of μ and σ are plotted in Figure 3.  
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100 120 

The prior distribution of fracture toughness computed from Eq. (12) is plotted in Figure 4(a). 
The mean of X is the same as prior mean of 120 MPa-Vm, but its standard deviation (37 MPa-Vm) 
is higher due to uncertainty associated with p and a. 

For the sake of illustration, the lower bound toughness is defined as q = 5% percentile of the 
distribution of X Figure 4(b) shows the prior distribution of 5% percentile (X05) computed from 
Eq. (14). It is interesting to see that distribution of X05 is highly skewed with a mean of 74.3 and 
a large standard deviation of 20.5 MPa'Im. 

These prior distributions are somewhat tentative starting point of the analysis. They can be 
calibrated using the available data, as shown in the next section. 

3. Case Study 

3.1 Updating the Distribution of Fracture Toughness 

The prior distributions of p and a are updated using a sample of 47 values of fracture toughness 
(Figure 1). The Bayesian updating method is described in Appendix. The updated parameters of 
the distributions of p and a are obtained as a' = a + n/2 = 25.27, A,' = A, + n = 55.50, 

9'=— (ix.-Fy1,9)=129.3, and )6 '=fl+-1 (i 4 +202 -2'0' 2 )=16869.5 The updated 
2 i=i

mean values are E[p] =129.3 and E[a] = 26.23 MPa'Im, and updated standard deviations are 
SD[u] = 3.54 and SD[a] = 2.67. 
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The prior distribution of fracture toughness computed from Eq. (12) is plotted in Figure 4(a). 
The mean of X is the same as prior mean of 120 MPa√m, but its standard deviation (37 MPa√m) 
is higher due to uncertainty associated with μ and σ. 

For the sake of illustration, the lower bound toughness is defined as q = 5% percentile of the 
distribution of X. Figure 4(b) shows the prior distribution of 5% percentile (X.05) computed from 
Eq. (14). It is interesting to see that distribution of X.05 is highly skewed with a mean of 74.3 and 
a large standard deviation of 20.5 MPa√m.  

These prior distributions are somewhat tentative starting point of the analysis. They can be 
calibrated using the available data, as shown in the next section. 

3. Case Study 

3.1 Updating the Distribution of Fracture Toughness 

The prior distributions of μ and σ are updated using a sample of 47 values of fracture toughness 
(Figure 1). The Bayesian updating method is described in Appendix. The updated parameters of 
the distributions of μ and σ are obtained as α′ = α + n/2 = 25.27, λ′ = λ + n = 55.50, 

1

1' 129.3
'

n

i
i

xθ λθ
λ =

⎛ ⎞= + =⎜ ⎟
⎝ ⎠
∑ , and 2 2 2

1

1' ' ' 16869.5
2

n

i
i

xβ β λθ λ θ
=

⎛ ⎞= + + − =⎜ ⎟
⎝ ⎠
∑ . The updated 

mean values are E[μ] =129.3 and E[σ] = 26.23 MPa√m, and updated standard deviations are 
SD[μ] = 3.54 and SD[σ] = 2.67.  
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Figure 5: Posterior marginal distributions of (a) p and (b) a 

Updated distributions of p and a are plotted in Figure 5. It is interesting to note that posterior of 
mean of p has slightly increased to 129 from its prior value of 120 MPagm, but its standard 
deviation (variability) has decreased significantly from 12 to 3.5 MPa'Im. The posterior mean of 
a has decreased slightly to 26 from 30, but its standard deviation is also reduced drastically to 
2.67 from its prior value of 18 MPagm. In summary, posterior distributions contain much less 
uncertainty than their prior counterparts. 
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Figure 6: Posterior distributions (a) Kc and (b) 5% percentile of Kc 

The posterior distribution of K, is plotted in Figure 6(a), which also shows that the standard 
deviation is reduced to 26 MPa'Im from 37 MPa'Im. The deterministic lower bound value of 72 
given in the code is equivalent to 98.7% of the distribution, that is, Pr[Xq < 72] = 1.3%. 
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Updated distributions of μ and σ are plotted in Figure 5. It is interesting to note that posterior of 
mean of μ has slightly increased to 129 from its prior value of 120 MPa√m, but its standard 
deviation (variability) has decreased significantly from 12 to 3.5 MPa√m. The posterior mean of 
σ has decreased slightly to 26 from 30, but its standard deviation is also reduced drastically to 
2.67 from its prior value of 18 MPa√m. In summary, posterior distributions contain much less 
uncertainty than their prior counterparts.  
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The posterior distribution of Kc is plotted in Figure 6(a), which also shows that the standard 
deviation is reduced to 26 MPa√m from 37 MPa√m. The deterministic lower bound value of 72 
given in the code is equivalent to 98.7% of the distribution, that is, Pr[Xq < 72] = 1.3%. 
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Table 1: Illustration of different values of Xo, 

Percentil Percentile Values X0 (MPaVm) 
e Confidence Level (1- p)% Mean of SD of Xq

q % 2.5% 5% 10% xq 
2.5% 64 67 70 77.9 6.32 
5% 74 76 79 86.2 5.64 

10% 85 87 89 95.7 4.92 

As a matter of illustration, probability distributions of q = 2.5%, 5% and 10% percentiles of & 
were derived and from these distributions, lower bounds corresponding to probability level of p 
= 2.5%, 5% and 10% were computed. These results in Table 1 basically show variation of of 
lower bound with respect to q and p. In this paper, 5% percentile at 5% probability (or 95%) 
confidence level), X.051.05 = 76 MPa-Vm, is proposed as an example of the lower bound. The 
probability distribution of this lower bound Kc is plotted in Figure 6(b). 

3.2 Impact of New K, Data on the Lower Bound 

Suppose a of a surveillance pressure tube is removed from a reactor and through the burst testing 
the fracture toughness of sample at 250°C is measured as y MPaVm. Based on this observation, 
(1-p)th confidence level associated with the lower bound (X05 = 76 MPa'Im) can be updated. 
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Figure7: Updated confidence level associated with the bound K 

110 

To illustrate these concepts, it is assumed that a single new value of fracture toughness (y) can 
vary from 70 to 105 MPa'Im. Given one single value of y, the lower bound distribution was 
updated using the Bayesian method described in the paper. The revised probability (p%) level 
versus new Kc value is plotted in Figure 7, which shows that p increases slowly when y decreases 
from 105 to 70 MPa'Im. It is interesting that even if a value of y = 70 MPa'Im less than the lower 
bound were observed, the confidence level decreases slightly from 95% to 90%. This small 
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updated using the Bayesian method described in the paper. The revised probability (p%) level 
versus new Kc value is plotted in Figure 7, which shows that p increases slowly when y decreases 
from 105 to 70 MPa√m. It is interesting that even if a value of y = 70 MPa√m less than the lower 
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decrease in the confidence level should not challenge the lower bound, and shall be updated as 
new data arrive in the future. 

4. Conclusions 

The paper presents a probabilistic approach to establish the lower bound fracture toughness 
considering both aleatory and epistemic uncertainties. The paper also presents anew Bayesian 
approach to update the confidence level associated with lower bound, as new data become 
available from the testing of a surveillance pressure tube. The basic idea is that a new test 
observation revises the confidence level associated with the lower bound, but it should not 
change the lower bound until the confidence level is significantly deteriorated. 

The paper defines the lower bound fracture toughness as xgo, which is a qth
 percentile of IC, at a 

(1- p)% confidence level. Using the available data for K, measured at 250°C, the lower bound is 
proposed as x051.05, = 76 MPa'Im as an illustration. It is 5th percentile of K, with a 95% 
confidence. The impact of new fracture toughness data on the lower bound is further examined. 
It shows that the confidence level associated with the lower bound decrease slightly from 0.95 to 
0.90 as a new value of new K, varies from 105 to 70 MPa'Im. 

The proposed probabilistic approach is more versatile for fitness for service assessments than the 
deterministic method. 
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6. Appendix: Derivation of Bayesian Updating Method 

6.1 General Concept 

Bayesian analysis is a process of updating the distribution of a random variable X given new 
evidence in form of a sample of data, x = (xi, x2, ..., xn)T. The probability distribution of X given 
the parameters (a scalar or a vector quantity) is denoted as f(xg). The distribution parameter 
is not known a priori and therefore it is treated as a random variable with a distribution, fg), also 
known as the prior distribution. Given a sample of data, the prior distribution can be updated 
using Bayes' theorem [6] as 

f( x)=Kf(xl )f( ) (15) 

where f(49x) is also referred to as posterior distribution. The likelihood of a sample given a 
parameter value is given by the joint density f (xI ); and K = [RXIUA)](141- 1 is a normalizing 

constant. The updated distribution of X can be obtained using the posterior distribution of the 
parameter, f(,lx) (Press, 1989): 

f(xix)=If(x0f( lx)g 

6.2 Analysis of the Proposed Model 

(16) 

For the normal-gamma model discussed in Section 2, the likelihood function of a sample of n 
fracture toughness values x = (xi, x2, ... xn)T is written as 

j nI2 

f I P,T)=Hf(xi lp 2
~1 exp[—;i — P)2-11]

i=1 

(17) 

By substituting the prior densities (Eqs. 5 and 8) and the likelihood function (Eq. 17) in Eq. 15 
leads to the joint posterior density distribution of the distribution parameters as 

f ,( 131)a' VT1 a'-112 r r 

exP i - 2L2r+AAP —021} 

The updated parameters, denoted by prime (') are obtained as 

(18) 

1 n 1 ( na' = a + n/2, =2,+n, (Ex i +19), and ,6'= )6+— 2 Ex 2 +2,02 . (19) 
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Note that updating is done by simply augmenting the sample information, because the prior 
distributions belong to a conjugate family. From this joint posterior distribution, the marginal 
posteriors of p and a can be derived, which are of the same form as those given in Eqs. (20) and 
(21): 

-(2a'+1)/2 

NIT'l[a'+ Y2][1+ (p - 60)21 
f  (11)- ,12fi' nr (a') 2fi ' I A: i 

ft co 
f 

2 '
i) ) 

(6)-(2a'+1) exp( /3,/0_2) 
1 ( flot 

(20) 

(21) 

The predictive distribution of X, as given by Eq. (16) again turns out to be the t-distribution with 

2a' degrees of freedom, mean of 0', and precision of VaV11,11+11.1, ' , i.e. 

x-6$' 
Vfi'la1V1+11.1,1 t2a (22) 

Finally, the updated distribution of the qth percentile (Xq) can be obtained from Eq. (18) by 
replacing the distribution parameters by their posterior estimates. 
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