
30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3
33rd CNS/CNA Student Conference TELUS Convention Centre, Calgary, Alberta

USING FORTRAN MODULES TO DESIGN AND DEVELOP MODULAR REACTOR
ANALYSIS SOFTWARE COMPONENTS

M G. Mwaba
Atomic Energy of Canada Limited, Chalk River, Ontario, Canada

Abstract

This paper presents a design for heavy and light water property calculation routines using object-
oriented design techniques. The designed routines are part of a new thermalhydraulics code being
developed by Atomic Energy of Canada Limited (AECL). We demonstrate how application of
object-oriented methodology leads to Fortran modules that use new features of Fortran 95
effectively. We also present performance metrics. This paper contributes in two ways. Firstly, it
provides a methodology that can be used to systematically identify objects, assign responsibilities to
the objects and establish the interaction among objects. Secondly, it shows how the designs can be
communicated using the Unified Modeling Language (UML).

1. Introduction

The main objective of this paper is to present a methodology for designing Fortran modules using
object-oriented techniques and suggest a way of communicating the design to other developers. A
Fortran module is a programming unit introduced in Fortran 90. It can contain variables,
parameters, derived type definitions, and procedures (subroutines and functions). Each of these
entities can be declared as private or public. Private entities can only be used inside a module where
they are defined. Entities declared with public attribute are available to any program unit that uses
the module. Most developers view a Fortran module simply as a replacement for Fortran Common
Blocks. As will be demonstrated in this paper, a Fortran module is a very powerful tool that can be
used to design and develop modular software.

Most scientific software, including those for reactor analysis, has been coded in Fortran 77. Fortran
77 has been the language of choice for intensive numerical computational software due to its
effective manipulation of arrays and its computational analysis capabilities. Fortran 77, however,
has several limitations such as lack of data abstraction features, lack of dynamic memory allocation
and lack of encapsulation. While some existing codes are well structured, the Fortran 77 limitations
make it difficult to extend code (less suitable for developing modular software components) and
lead to code that progressively becomes more difficult to maintain. These limitations have been
addressed in the new standards (Fortran 90, Fortran 95 and Fortran 2003) making it possible for
scientists and engineers to develop code that is re-usable, extensible and maintainable. Developing
such code, however, requires a paradigm shift from functional decomposition techniques to object
oriented techniques.

In the C++ community the object-oriented approach is one of the mainstream technologies used for
the development of large-scale software systems. Trio_U [1], a thermalhydraulics software tool, is
one example of a reactor analysis software designed and implemented using object-oriented
techniques. In the Fortran community object-oriented technology is a new concept. Following the
release of the modern Fortran standard, a measured interest in using object-oriented techniques for
developing Fortran programs has been observed in literature [2-6]. Decyk et. al [2] have presented a

Page 1 of 9

USING FORTRAN MODULES TO DESIGN AND DEVELOP MODULAR REACTOR
ANALYSIS SOFTWARE COMPONENTS

M G. Mwaba

Atomic Energy of Canada Limited, Chalk River, Ontario, Canada

Abstract

This paper presents a design for heavy and light water property calculation routines using object-
oriented design techniques. The designed routines are part of a new thermalhydraulics code being
developed by Atomic Energy of Canada Limited (AECL). We demonstrate how application of
object-oriented methodology leads to Fortran modules that use new features of Fortran 95
effectively. We also present performance metrics. This paper contributes in two ways. Firstly, it
provides a methodology that can be used to systematically identify objects, assign responsibilities to
the objects and establish the interaction among objects. Secondly, it shows how the designs can be
communicated using the Unified Modeling Language (UML).

1. Introduction

The main objective of this paper is to present a methodology for designing Fortran modules using
object-oriented techniques and suggest a way of communicating the design to other developers. A
Fortran module is a programming unit introduced in Fortran 90. It can contain variables,
parameters, derived type definitions, and procedures (subroutines and functions). Each of these
entities can be declared as private or public. Private entities can only be used inside a module where
they are defined. Entities declared with public attribute are available to any program unit that uses
the module. Most developers view a Fortran module simply as a replacement for Fortran Common
Blocks. As will be demonstrated in this paper, a Fortran module is a very powerful tool that can be
used to design and develop modular software.

Most scientific software, including those for reactor analysis, has been coded in Fortran 77. Fortran
77 has been the language of choice for intensive numerical computational software due to its
effective manipulation of arrays and its computational analysis capabilities. Fortran 77, however,
has several limitations such as lack of data abstraction features, lack of dynamic memory allocation
and lack of encapsulation. While some existing codes are well structured, the Fortran 77 limitations
make it difficult to extend code (less suitable for developing modular software components) and
lead to code that progressively becomes more difficult to maintain. These limitations have been
addressed in the new standards (Fortran 90, Fortran 95 and Fortran 2003) making it possible for
scientists and engineers to develop code that is re-usable, extensible and maintainable. Developing
such code, however, requires a paradigm shift from functional decomposition techniques to object
oriented techniques.

In the C++ community the object-oriented approach is one of the mainstream technologies used for
the development of large-scale software systems. Trio_U [1], a thermalhydraulics software tool, is
one example of a reactor analysis software designed and implemented using object-oriented
techniques. In the Fortran community object-oriented technology is a new concept. Following the
release of the modern Fortran standard, a measured interest in using object-oriented techniques for
developing Fortran programs has been observed in literature [2-6]. Decyk et. al [2] have presented a

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 1 of 9

30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3
33rd CNS/CNA Student Conference TELUS Convention Centre, Calgary, Alberta

concise summary of the concepts of data abstraction, functional overloading, classes, inheritance,
polymorphism, and how to implement them in Fortran 90. Machiel and Deville [3] have argued that
complex data sets can be handled better with object-oriented programming and have shown how
object-oriented concepts can be implemented in the framework of Fortran 90. Worth [4] has
provided a survey of tools and techniques that allow Fortran programmers to use object-oriented
programming techniques in the development of their programs. A good overview of how object-
oriented features can be implemented in Fortran 90 is given by Akin [5]. Fortran 95 has added more
desirable features and examples of how they can be used can be found in [6]. While these papers do
an excellent job at showing how the new concepts can be implemented in Fortran, information on
how to design the routines and how to communicate such designs is very scarce. Worth mentioning
is the paper by Gary and Roberts [7] that discusses both the design and implementation of Fortran
90 object-oriented features. Missing from this paper is how best to communicate the designs.

The greatest challenge facing a Fortran developer is to come to speed on how to create object-
oriented designs and how to communicate such designs. This paper contributes in two ways.
Firstly, it provides a methodology that can be used to systematically identify objects, assign
responsibilities to the objects and establish the interaction among objects. Secondly, it shows how
the designs can be communicated among developers and other stakeholders using the Unified
Modeling Language (UML) [8]. UML is a general purpose visual modelling language used to
specify, visualize, construct and document major elements of a software system. While UML is
very popular among C++ developers, the author is not aware of any published work in the public
domain on the use of UML by Fortran developers. This paper attempts to fill that void.

This paper is organized as follows. A brief background of the problem is outlined in Section 2. The
proposed design methodology is explained in Section 3. To consolidate the ideas of Section 3,
design of routines for heavy and light water property evaluations for use in a new advanced
thermalhydraulics network analysis code is presented in Section 4. Section 5 discusses the
implementation and presents the performance metrics. The concluding remarks are given in Section
6.

2. Background

The CATHENA 4 code is the next generation systems thermalhydraulics analysis code currently
being developed by Atomic Energy of Canada Limited (AECL) for simulating transient, non-
equilibrium, multi-phase flow and heat transfer. The CATHENA 4 code will primarily be used in
the design and safety analysis of CANDU reactors and thermalhydraulics experimental facilities.
Object Oriented Design (00D) techniques have been used for the design of CATHENA 4 so as to
promote a modular design thus providing ease of future extensions to support multi-dimensional
applications and the consolidation of other AECL analysis codes. The CATHENA 4 code is
designed to comprise several subsystems, each subsystem being an aggregate of modules. Each
module has been designed to contain data elements bundled together with procedures that operate
on the data. One of the modules, known as HLWP 2.0, is responsible for the calculation of
properties for heavy and light water and some non-condensable gases at given conditions. The
design of HLWP 2.0 is described in this paper.

Thermodynamic and transport properties of fluids can be estimated by using a variety of fitted
functions. To maintain mathematical consistency between the thermodynamic properties and their
derivatives, the single-state dependent property of specific entropy S as a function of absolute

Page 2 of 9

concise summary of the concepts of data abstraction, functional overloading, classes, inheritance,
polymorphism, and how to implement them in Fortran 90. Machiel and Deville [3] have argued that
complex data sets can be handled better with object-oriented programming and have shown how
object-oriented concepts can be implemented in the framework of Fortran 90. Worth [4] has
provided a survey of tools and techniques that allow Fortran programmers to use object-oriented
programming techniques in the development of their programs. A good overview of how object-
oriented features can be implemented in Fortran 90 is given by Akin [5]. Fortran 95 has added more
desirable features and examples of how they can be used can be found in [6]. While these papers do
an excellent job at showing how the new concepts can be implemented in Fortran, information on
how to design the routines and how to communicate such designs is very scarce. Worth mentioning
is the paper by Gary and Roberts [7] that discusses both the design and implementation of Fortran
90 object-oriented features. Missing from this paper is how best to communicate the designs.

The greatest challenge facing a Fortran developer is to come to speed on how to create object-
oriented designs and how to communicate such designs. This paper contributes in two ways.
Firstly, it provides a methodology that can be used to systematically identify objects, assign
responsibilities to the objects and establish the interaction among objects. Secondly, it shows how
the designs can be communicated among developers and other stakeholders using the Unified
Modeling Language (UML) [8]. UML is a general purpose visual modelling language used to
specify, visualize, construct and document major elements of a software system. While UML is
very popular among C++ developers, the author is not aware of any published work in the public
domain on the use of UML by Fortran developers. This paper attempts to fill that void.

This paper is organized as follows. A brief background of the problem is outlined in Section 2. The
proposed design methodology is explained in Section 3. To consolidate the ideas of Section 3,
design of routines for heavy and light water property evaluations for use in a new advanced
thermalhydraulics network analysis code is presented in Section 4. Section 5 discusses the
implementation and presents the performance metrics. The concluding remarks are given in Section
6.

2. Background

The CATHENA 4 code is the next generation systems thermalhydraulics analysis code currently
being developed by Atomic Energy of Canada Limited (AECL) for simulating transient, non-
equilibrium, multi-phase flow and heat transfer. The CATHENA 4 code will primarily be used in
the design and safety analysis of CANDU reactors and thermalhydraulics experimental facilities.
Object Oriented Design (OOD) techniques have been used for the design of CATHENA 4 so as to
promote a modular design thus providing ease of future extensions to support multi-dimensional
applications and the consolidation of other AECL analysis codes. The CATHENA 4 code is
designed to comprise several subsystems, each subsystem being an aggregate of modules. Each
module has been designed to contain data elements bundled together with procedures that operate
on the data. One of the modules, known as HLWP 2.0, is responsible for the calculation of
properties for heavy and light water and some non-condensable gases at given conditions. The
design of HLWP 2.0 is described in this paper.

Thermodynamic and transport properties of fluids can be estimated by using a variety of fitted
functions. To maintain mathematical consistency between the thermodynamic properties and their
derivatives, the single-state dependent property of specific entropy S as a function of absolute

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 2 of 9

30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3
33rd CNS/CNA Student Conference TELUS Convention Centre, Calgary, Alberta

pressure P and specific enthalpy h is an appropriate choice for fitting via piecewise Hermite
polynomials [9]. All the required properties can then be obtained from the first and second
derivatives of specific entropy. These thermodynamic property expressions can be derived from the
fundamental relations for a simple, compressible system of fixed chemical substances [10].

3. Design Methodology

The design philosophy adopted is to utilize the Fortran module as the fundamental programming
unit. Modules are designed to take advantage of the Fortran 95/2003 features, such as allocatable
arrays, pointers, private and public attributes, optional arguments and derived types [11]. With
these features desired design goals such as readability, portability, extensibility and maintainability
(ability to fix errors in the code) can easily be demonstrated. A module can contain variables,
parameters, derived type definitions, and procedures (subroutines and functions). Each of these
entities can be declared with a private or public accessibility attribute. Private entities can only be
used inside a module where they are defined. Entities declared with public attribute are available to
any program unit that uses the module. An important aspect of a module is its ability to facilitate
data encapsulation. The module is designed to contain one or more derived data types and the
procedures that operate on these data types.

The modules are designed using an object-oriented approach. The general steps taken to design a
module using an object-oriented approach are outlined below:

1. Objects that can contribute to performing the task of the subsystem are identified. Each such object
is assigned a responsibility, or a set of related responsibilities.

2. Information needed for the object to perform the assigned responsibility is identified. This
information constitutes the data to be managed by the object.

3. The behaviour of the object is next assigned. The behaviour is a set of tasks that the object should
perform in order to fulfill its responsibilities.

4. Associations are established to indicate how objects relate to one another.
5. Decisions are made on what information an object is "willing" to share with other objects. The

information to be shared is classified as public while that not to be shared is denoted as private.
6. The means by which an object will communicate with others is defined. This forms an interface of

the object.

Performing steps 1 — 6 naturally leads to a Fortran module in the following manner:

• The information required for the object to perform its tasks becomes the data context of the
module (Step 2).

• The behaviour of the object translates into procedures (subroutines and functions) within the
modules (Step 3).

• Associations between objects give information on how they interact with one another (Step 4).

• Decisions on information sharing between objects lead to assignment of private and public
attributes within the modules (Step 5).

• The means of object communication defines a module's interface (Step 6).

Page 3 of 9

pressure P and specific enthalpy h is an appropriate choice for fitting via piecewise Hermite
polynomials [9]. All the required properties can then be obtained from the first and second
derivatives of specific entropy. These thermodynamic property expressions can be derived from the
fundamental relations for a simple, compressible system of fixed chemical substances [10].

3. Design Methodology

The design philosophy adopted is to utilize the Fortran module as the fundamental programming
unit. Modules are designed to take advantage of the Fortran 95/2003 features, such as allocatable
arrays, pointers, private and public attributes, optional arguments and derived types [11]. With
these features desired design goals such as readability, portability, extensibility and maintainability
(ability to fix errors in the code) can easily be demonstrated. A module can contain variables,
parameters, derived type definitions, and procedures (subroutines and functions). Each of these
entities can be declared with a private or public accessibility attribute. Private entities can only be
used inside a module where they are defined. Entities declared with public attribute are available to
any program unit that uses the module. An important aspect of a module is its ability to facilitate
data encapsulation. The module is designed to contain one or more derived data types and the
procedures that operate on these data types.

The modules are designed using an object-oriented approach. The general steps taken to design a
module using an object-oriented approach are outlined below:

1. Objects that can contribute to performing the task of the subsystem are identified. Each such object
is assigned a responsibility, or a set of related responsibilities.

2. Information needed for the object to perform the assigned responsibility is identified. This
information constitutes the data to be managed by the object.

3. The behaviour of the object is next assigned. The behaviour is a set of tasks that the object should
perform in order to fulfill its responsibilities.

4. Associations are established to indicate how objects relate to one another.
5. Decisions are made on what information an object is “willing” to share with other objects. The

information to be shared is classified as public while that not to be shared is denoted as private.
6. The means by which an object will communicate with others is defined. This forms an interface of

the object.

Performing steps 1 – 6 naturally leads to a Fortran module in the following manner:

• The information required for the object to perform its tasks becomes the data context of the
module (Step 2).

• The behaviour of the object translates into procedures (subroutines and functions) within the
modules (Step 3).

• Associations between objects give information on how they interact with one another (Step 4).

• Decisions on information sharing between objects lead to assignment of private and public
attributes within the modules (Step 5).

• The means of object communication defines a module’s interface (Step 6).

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 3 of 9

30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3
33rd CNS/CNA Student Conference TELUS Convention Centre, Calgary, Alberta

UML standard defines several diagrams for use in communicating software elements. For this
paper, the design can then be presented using two types of UML diagrams, namely, class diagrams
and sequence diagrams. A class diagram is a static view representation of the elements that make
up the software. A sequence diagram is a dynamic view representing how the software elements
interact. Modules and their relationships are presented in terms of class diagrams. A complete class
diagram includes attributes, procedures (subroutines and functions) and associations. The
interaction of modules is shown using a sequence diagram.

4. HLWP 2.0

The problem to be solved can be stated as follows: We need a set of routines for evaluating
thermodynamic and transport properties of light water (1120) and heavy water (D20), and
thermodynamic properties of non-condensable gases. Hermite polynomial fitting methods are used for
the calculation of H2O and D20 properties using entropy and its derivatives as a basis for the fits to
available standard property data. The data for non-condensables is fitted using standard generating
functions. The property data is to be loaded at run time.

4.1 Requirements

To have efficient functioning software, several requirements have to be satisfied. Here we highlight
just four of them.
1. Speed is a key requirement since for two-phase flow simulation fluid properties are evaluated at

each time step.
2. Allowance should be made for future expansion of the property database, i.e adding more materials

or expanding the property data set.
3. Property routines can be used in a variety of thermalhydraulics codes, e.g. system codes and

subchannel codes. Therefore abstraction and re-usability are key requirements.
4. The HLWP 2.0 should be able to run in parallel when required.

4.2 Design

Our efforts have been directed at specifying Fortran modules and encapsulating data. By following
this method, we ensure that Fortarn modules 'own' data leading to data localization. Following the
design methodology presented in Section 3 several core and support modules are identified. In this
paper we show and describe five core modules and three support modules. The five core modules
are FldProps_m, Entropies _m, Hermites m, PropsData_m and Reader m. The three modules
playing support roles are PosLOcate_m, KindType_m and lounit_m. The relationship between these
modules is depicted in a class diagram shown in Fig. 1 in conformity with the UML notation. In the
figure, each rectangular box represents a Fortran module. The three parts of the box show the
module's name, its data attributes (variables and parameters) and the procedures that act on the data.
Private attributes are preceded by a negative sign while public ones are preceded by a positive sign.
The open diamond indicates the Fortran "use" relationship. It allows a Fortran module to have
access of the public attributes of another module. For instance, since FldProps_m uses
PropsData_m, FldProps_m has access to the variable PropData_t and to the subroutine Get data().

Page 4 of 9

UML standard defines several diagrams for use in communicating software elements. For this
paper, the design can then be presented using two types of UML diagrams, namely, class diagrams
and sequence diagrams. A class diagram is a static view representation of the elements that make
up the software. A sequence diagram is a dynamic view representing how the software elements
interact. Modules and their relationships are presented in terms of class diagrams. A complete class
diagram includes attributes, procedures (subroutines and functions) and associations. The
interaction of modules is shown using a sequence diagram.

4. HLWP 2.0

The problem to be solved can be stated as follows: We need a set of routines for evaluating
thermodynamic and transport properties of light water (H2O) and heavy water (D2O), and
thermodynamic properties of non-condensable gases. Hermite polynomial fitting methods are used for
the calculation of H2O and D2O properties using entropy and its derivatives as a basis for the fits to
available standard property data. The data for non-condensables is fitted using standard generating
functions. The property data is to be loaded at run time.

4.1 Requirements

To have efficient functioning software, several requirements have to be satisfied. Here we highlight
just four of them.
1. Speed is a key requirement since for two-phase flow simulation fluid properties are evaluated at

each time step.
2. Allowance should be made for future expansion of the property database, i.e adding more materials

or expanding the property data set.
3. Property routines can be used in a variety of thermalhydraulics codes, e.g. system codes and

subchannel codes. Therefore abstraction and re-usability are key requirements.
4. The HLWP 2.0 should be able to run in parallel when required.

4.2 Design

Our efforts have been directed at specifying Fortran modules and encapsulating data. By following
this method, we ensure that Fortarn modules ‘own’ data leading to data localization. Following the
design methodology presented in Section 3 several core and support modules are identified. In this
paper we show and describe five core modules and three support modules. The five core modules
are FldProps_m, Entropies_m, Hermites_m, PropsData_m and Reader_m. The three modules
playing support roles are PosLOcate_m, KindType_m and Iounit_m. The relationship between these
modules is depicted in a class diagram shown in Fig. 1 in conformity with the UML notation. In the
figure, each rectangular box represents a Fortran module. The three parts of the box show the
module’s name, its data attributes (variables and parameters) and the procedures that act on the data.
Private attributes are preceded by a negative sign while public ones are preceded by a positive sign.
The open diamond indicates the Fortran “use” relationship. It allows a Fortran module to have
access of the public attributes of another module. For instance, since FldProps_m uses
PropsData_m, FldProps_m has access to the variable PropData_t and to the subroutine Get_data().

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 4 of 9

30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta 33rd CNSICNA Student Conference

FldProps_rn

-TYPE: FProps_t
-TYPE(PropData_t): : H2Olig
-TYPE(PropData_t): : H2Ovap
-TYPE(PropData_t): : H2Osat
-TYPE(PropData_t): : 0201ig
-TYPE(PropData_t): : 020vap
-TYPE(PropData_t): : D20Sat
-TYPE(PropData_t): : Nc
-INTEGER: : Id max
-TYPE(FProps_t): : This

+Update_Propso
-Fun H_nc()
-Fun Cp_nc()
-Fun Mu_nc()
-Fun Larnbda_nc()
-Fun Deriv_rho_nr()
-Fun Poly()

Entropies_rn

+Type: :Entropies _t

+Sub Update 5()

PropsData_rn

+TYPE: : PropData_t

+Sub Get data()

PosLocate_rn

+Fun locate()

Hermites_m

+TYPE: : Hermites
-INTEGER: : Loop

+5ub Hermtes()
-Sub Value talc()
-Fun Alpha()
-Fun Beta()
-Fun DAlpha()
-Fun Meta()
-Fun 02Alpha()
-Fun 026eta()

KindType_m

+INTEGER, PARAMETER: : 132
+INTEGER, PARAMETER: : 164
+REAL, PARAMETER: : R32
+REAL, PARAMETER: : R64

Reader m

+TYPE: : PtrDatat
-TYPE: : RValue_ld_t
-TYPE: : RValue_2d_t
+TYPE: : RValue_3d_t
-TYPE: : IValue_ld_t
-TYPE: IVatue_2d_t

+Sub Read data()
-Sub Read_ldRO
-Sub Read_2dRO
-Sub Read 3d()
-Sub Read_Id1()
-Sub Read 2d10

IOunit_m

+Sub Get_IOunit()

Figure 1 Class diagram showing the relationship between modules making up HLWP 2.0.

FldProps_m is the entry point to HLWP 2.0 and is the only module that interacts directly with a
client. The main purpose of FldProps m module is to calculate thermodynamic and transport
properties of fluids given pressure and temperature (or enthalpy). To satisfy the requirement for
speed, minimization of communication among modules and within modules is a key design goal for
this module.

FldProps_m contains one derived data type and nine procedures. The derived data type has a public
attribute so that client programs can access the properties. Seven of the procedures have private
attribute and only one procedure has a public attribute. The public procedure provides the module's
interface allowing external programs to access it. Some properties are calculated using entropies
and their slopes. FldProps_m relies on Entropies m to provide this information. Entropies m has
one derived data type and one procedure. Entropies and their slopes are calculated using hermite
values. The responsibility of calculating hermite values is assigned to Hermites_m.

The module PropsData_m is responsible for retrieving data required for property calculations from
storage sources. PropsData_m contains one derived data type and one procedure. The data type
has public access attribute while the procedure has a private attribute. The responsibility of reading
data is assigned to Reader m. This module contains subroutines that read data from files and store
it in an array of pointers. The files contain hermit coefficients that are used in the calculation of
fluid properties.

Page 5 of 9

Figure 1 Class diagram showing the relationship between modules making up HLWP 2.0.

FldProps_m is the entry point to HLWP 2.0 and is the only module that interacts directly with a
client. The main purpose of FldProps_m module is to calculate thermodynamic and transport
properties of fluids given pressure and temperature (or enthalpy). To satisfy the requirement for
speed, minimization of communication among modules and within modules is a key design goal for
this module.

FldProps_m contains one derived data type and nine procedures. The derived data type has a public
attribute so that client programs can access the properties. Seven of the procedures have private
attribute and only one procedure has a public attribute. The public procedure provides the module’s
interface allowing external programs to access it. Some properties are calculated using entropies
and their slopes. FldProps_m relies on Entropies_m to provide this information. Entropies_m has
one derived data type and one procedure. Entropies and their slopes are calculated using hermite
values. The responsibility of calculating hermite values is assigned to Hermites_m.

The module PropsData_m is responsible for retrieving data required for property calculations from
storage sources. PropsData_m contains one derived data type and one procedure. The data type
has public access attribute while the procedure has a private attribute. The responsibility of reading
data is assigned to Reader_m. This module contains subroutines that read data from files and store
it in an array of pointers. The files contain hermit coefficients that are used in the calculation of
fluid properties.

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 5 of 9

30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta 33rd CNS/CNA Student Conference

Client FldProps

1 Update_PropsO'

PropsIData Reader m

2: Get_date0p.

: Read_dateC,

111

lamIt

Get_lounita

Er

10 9 :Update_props0

5

6 :Read_data0

1 1 :Update_Entropies0

PosLocate Entropies m Hermites m

12: Update_Hermitestli

—41
13

15

16 :Update_Props0

17

Figure 2 Sequence diagram depicting the dynamic interaction of objects in HLWP 2.0.

The dynamic interaction of modules within HLWP 2.0 is shown in Fig.2. A client (program that
needs fluid properties) sends a message "Update_Props" to FldProps_m. Sending a message is
analogous to making a call to a procedure. If property data is not yet loaded, FldProps m sends a
message to PropsData_m requesting for data. If data is available, FldProps_m requests for updated
entropy values from Entropies_m. To update the entropy values Entropies_m asks Hermites_m to
update the hermites values. Once the hermite values are updated, Entropies_m calculates the new
entropies, the derivatives and informs FldProps m. Once FldProps_m has the required
information, it calculates the properties and sends the updated properties to the client.

The design presented above is modular and extensible, just to mention two attributes. It is modular
since each of the modules is independent and interacts only through the interface. The advantage of
this is that separate modules can be assigned to different developers. The modular nature also
allows for extensibility. If in future a new material is needed, all we need is a new property data
file. If changes were needed they would be minimal and localized.

Page 6 of 9

Figure 2 Sequence diagram depicting the dynamic interaction of objects in HLWP 2.0.

The dynamic interaction of modules within HLWP 2.0 is shown in Fig.2. A client (program that
needs fluid properties) sends a message “Update_Props” to FldProps_m. Sending a message is
analogous to making a call to a procedure. If property data is not yet loaded, FldProps_m sends a
message to PropsData_m requesting for data. If data is available, FldProps_m requests for updated
entropy values from Entropies_m. To update the entropy values Entropies_m asks Hermites_m to
update the hermites values. Once the hermite values are updated, Entropies_m calculates the new
entropies, the derivatives and informs FldProps_m. Once FldProps_m has the required
information, it calculates the properties and sends the updated properties to the client.

The design presented above is modular and extensible, just to mention two attributes. It is modular
since each of the modules is independent and interacts only through the interface. The advantage of
this is that separate modules can be assigned to different developers. The modular nature also
allows for extensibility. If in future a new material is needed, all we need is a new property data
file. If changes were needed they would be minimal and localized.

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 6 of 9

30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3
33rd CNS/CNA Student Conference TELUS Convention Centre, Calgary, Alberta

5. Implementation and Performance

The design outlined above has been implemented in Fortran 95 and compiled using the Intel 10.1
compiler. Figure 3 shows an excerpt of the Hermites_m implementation. Only the subroutine
Hermites and the derived type Hermites_t and are accessible from outside the module. Of interest is
the fact that the components of Hermites_t are private and therefore not accessible from outside the
module. With this implementation we can add or subtract components to Hermites_t without
affecting the sub-programs that use Hermites _m.

MODULE Hermites_m

USE KindType_m ! Module being used by Hermites_m

PRIVATE :: Values_calc ! Subroutine accessible only within Hermites_m
PRIVATE :: Alpha ! Function accessible only within Hermites_m

PUBLIC :: Hermites ! Subroutine accessible outside of Hermites_m

TYPE, PUBLIC :: Hermites_t ! Derived data type. Can be declared outside of Hermites_m
PRIVATE
REAL(KIND=R64) :: A ! Component of Hermite_values_t. Accessible only by procedures within

!Hermites_m
REAL(KIND=R64) B ! Component of Hermite_values_t. Accessible only by procedures within

!Hermites_m
INTEGER(KIND=R64) C ! Component of Hermite_values_t. Accessible only by procedures within

!Hermites_m
END TYPE Hermites_t

CONTAINS

SUBROUTINE Hermites

END SUBROUTINE Hermites

SUBROUTINE Values_calc

END SUBROUTINE Values_calc

FUNCTION Alpha () RESULT (...)

END FUNCTION Alpha

END MODULE Hermites_m

Figure 3 Excerpt of Hermites _m implementation

Page 7 of 9

5. Implementation and Performance

The design outlined above has been implemented in Fortran 95 and compiled using the Intel 10.1
compiler. Figure 3 shows an excerpt of the Hermites_m implementation. Only the subroutine
Hermites and the derived type Hermites_t and are accessible from outside the module. Of interest is
the fact that the components of Hermites_t are private and therefore not accessible from outside the
module. With this implementation we can add or subtract components to Hermites_t without
affecting the sub-programs that use Hermites_m.

Figure 3 Excerpt of Hermites_m implementation

MODULE Hermites_m
!
!
!
 USE KindType_m ! Module being used by Hermites_m

 PRIVATE :: Values_calc ! Subroutine accessible only within Hermites_m
 PRIVATE :: Alpha ! Function accessible only within Hermites_m
 !
 !
 !
 PUBLIC :: Hermites ! Subroutine accessible outside of Hermites_m

 TYPE, PUBLIC :: Hermites_t ! Derived data type. Can be declared outside of Hermites_m
 PRIVATE
 REAL(KIND=R64) :: A ! Component of Hermite_values_t. Accessible only by procedures within

!Hermites_m
 REAL(KIND=R64) :: B ! Component of Hermite_values_t. Accessible only by procedures within

!Hermites_m
 INTEGER(KIND=R64) :: C ! Component of Hermite_values_t. Accessible only by procedures within

!Hermites_m
 END TYPE Hermites_t

CONTAINS

 SUBROUTINE Hermites (……..)

 !
 !

 END SUBROUTINE Hermites

 SUBROUTINE Values_calc (…..)

 !
 !

 END SUBROUTINE Values_calc

 FUNCTION Alpha (…..) RESULT (…)

 !
 !

 END FUNCTION Alpha

END MODULE Hermites_m

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 7 of 9

30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta 33rd CNS/CNA Student Conference

Most Fortran developers are concerned about the performance codes implemented using object-
oriented techniques. A run-time speed comparison was made between HLWP 2.0 and HLWP 1.0, a
Fortran 77 implementation. The tests were run on a Pentium 4 2.80 GHz 504 MB RAM machine.
The results are shown in Table 1.

Table 1: CPU times for HLWP 1.0 and HLWP 2.0 comparison

Nodes CPU Time (sec)

HLWP 1.0 HLWP 2.0

1000 15.20 16.10

10000 166 178

100000 1884 2062

It can be seen that on average the speed of the new implementation is 0.90 times that of the Fortran
77 implementation. The slight reduction in speed is due to the overheads associated with OOD. The
performance is acceptable considering the many benefits associated with modular software.

6. Concluding Remarks

Fortran now has features that support the development of elegant, modular software. A Fortran
module is one such feature. We have presented a methodology that can be used to develop modular
software using OOD. We have also shown that Fortran designs can be communicated using UML.
The method has been applied to the design of heavy and light water property calculations routines
for use in new reactor analysis software. We conclude that the method presented in this paper can
assist the Fortran scientific community develop well-designed modules whose implementation
produces code that exhibits desired features such as maintainability, re-usability and extensibility.

7. References

[1] C. Calvin, 0. Cueto and P. Emonot, "An Object-oriented approach to the design of fluid
mechanics software", Mathematical Modelling and Numerical Analysis, Vol. 36, Iss. 5, 2002,
pp. 907-921.

[2] V.K. Decyk, C.D. Norton and B.K. Szymanski "Introduction to Object Oriented Concepts
using Fortran 90", Technical Report UCLA IPFR Report PPG-1560, 1996.

L. Machiels and M.O. Develle, "An Entry to Object-Oriented Programming For the Solution
of Partial Differential Equations," ACM Transactions on Mathematical Software, Vol. 23, Iss.
1, 1997, pp. 32-49.

[3]

Page 8 of 9

Most Fortran developers are concerned about the performance codes implemented using object-
oriented techniques. A run-time speed comparison was made between HLWP 2.0 and HLWP 1.0, a
Fortran 77 implementation. The tests were run on a Pentium 4 2.80 GHz 504 MB RAM machine.
The results are shown in Table 1.

 Table 1: CPU times for HLWP 1.0 and HLWP 2.0 comparison

CPU Time (sec) Nodes

HLWP 1.0 HLWP 2.0

1000 15.20 16.10

10000 166 178

100000 1884 2062

It can be seen that on average the speed of the new implementation is 0.90 times that of the Fortran
77 implementation. The slight reduction in speed is due to the overheads associated with OOD. The
performance is acceptable considering the many benefits associated with modular software.

6. Concluding Remarks

Fortran now has features that support the development of elegant, modular software. A Fortran
module is one such feature. We have presented a methodology that can be used to develop modular
software using OOD. We have also shown that Fortran designs can be communicated using UML.
The method has been applied to the design of heavy and light water property calculations routines
for use in new reactor analysis software. We conclude that the method presented in this paper can
assist the Fortran scientific community develop well-designed modules whose implementation
produces code that exhibits desired features such as maintainability, re-usability and extensibility.

7. References

[1] C. Calvin, O. Cueto and P. Emonot, “An Object-oriented approach to the design of fluid
mechanics software”, Mathematical Modelling and Numerical Analysis, Vol. 36, Iss. 5, 2002,
pp. 907-921.

[2] V.K. Decyk, C.D. Norton and B.K. Szymanski “Introduction to Object Oriented Concepts
using Fortran 90”, Technical Report UCLA IPFR Report PPG-1560, 1996.

[3] L. Machiels and M.O. Develle, “An Entry to Object-Oriented Programming For the Solution
of Partial Differential Equations,” ACM Transactions on Mathematical Software, Vol. 23, Iss.
1, 1997, pp. 32-49.

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 8 of 9

30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3
33rd CNS/CNA Student Conference TELUS Convention Centre, Calgary, Alberta

[4] D. J. Worth, "State of the Art in Object Oriented Programming with Fortran", Science and
Technology Facilities Council, Technical Report, RAL-TR-2008-002, ISSN 1358-6254, 2008.

[5] J.E. Akin, "Object Oriented Programming via Fortran 90," Engineering Computations, Vol.
16, Iss 1, 1999, pp. 26-48.

[6] J. Mahseredjian, B. Bressac, A. Xemard, P.-J. Lagace and P. Lacasse, "A Fortran-95
Implementation of EMTP Algorithms", Proceedings of the International Conference on Power
Systems Transients 686-691, Rio de Janeiro, Brazil, 2001, June 24-28.

[7] M.G. Gray and R.M. Roberts, "Object-based Programming in Fortran 90," Computers in
Physics, Vol. 11. Iss. 4, 1997, pp.355-361.

[8] T. A. Pender, UML Weekend Crash Course, Wiley Publishing Inc., New York, 2002.

[9] Y. Liner, B.N. Hanna and D.J. Richards "Piecewise Hermite Polynomial Approximation of
Liquid-Vapour Thermodynamic Properties", Fundamentals of Gas-Liquid Flows, Vol. 72,
1988, pp. 99-102.

[10] K. Wark, Thermodynamics, Third Edition, McGraw-Hill Book Company, New York, 1977.

[11] S. Chapman, Fortran 95/2003 for Scientists and Engineers, McGraw-Hill, New York, 3rd
Edition, 2007.

Page 9 of 9

[4] D. J. Worth, “State of the Art in Object Oriented Programming with Fortran”, Science and
Technology Facilities Council, Technical Report, RAL-TR-2008-002, ISSN 1358-6254, 2008.

[5] J.E. Akin, “Object Oriented Programming via Fortran 90,” Engineering Computations, Vol.
16, Iss 1, 1999, pp. 26-48.

[6] J. Mahseredjian, B. Bressac, A. Xémard, P.-J. Lagacé and P. Lacasse, “A Fortran-95
Implementation of EMTP Algorithms”, Proceedings of the International Conference on Power
Systems Transients 686–691, Rio de Janeiro, Brazil, 2001, June 24-28.

[7] M.G. Gray and R.M. Roberts, “Object-based Programming in Fortran 90,” Computers in
Physics, Vol. 11. Iss. 4, 1997, pp.355-361.

[8] T. A. Pender, UML Weekend Crash Course, Wiley Publishing Inc., New York, 2002.

[9] Y. Liner, B.N. Hanna and D.J. Richards "Piecewise Hermite Polynomial Approximation of
Liquid-Vapour Thermodynamic Properties", Fundamentals of Gas-Liquid Flows, Vol. 72,
1988, pp. 99-102.

[10] K. Wark, Thermodynamics, Third Edition, McGraw-Hill Book Company, New York, 1977.

[11] S. Chapman, Fortran 95/2003 for Scientists and Engineers, McGraw-Hill, New York, 3rd
Edition, 2007.

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 9 of 9

	Abstract
	1. Introduction
	2. Background
	3. Design Methodology
	4. HLWP 2.0
	5. Implementation and Performance
	6. Concluding Remarks
	7. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

