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Abstract 

SCWR was proposed as a type of generation IV reactors. The numerical simulation 
becomes a useful method for studying supercritical fluids in SCWR. The objective of 
this paper is to review the works that have been published in the numerical simulation 
of heat transfer of supercritical fluids under the SCWR conditions. Literatures show 
that there are still limits in the study of the fluid flow and the heat transfer of 
supercritical water in fuel channels. Due to this deficiency, the full-scale 3-D CFD 
simulations on the heat transfer of supercritical fluids are highly required for the 
design of SCWR. 

1. Introduction 

Supercritical fluids have been widely used in various industries, such as 
air-conditioning and heat pump systems in refrigeration engineering, cooling in rocket 
propulsion system in aerospace engineering, and cooling of superconducting 
electronics in cryogenics engineering [1, 2]. In nuclear industry, a supercritical 
water-cooled reactor (SCWR) was proposed as a type of generation IV reactors in 
order to improve the performance and efficiency of nuclear reactors [3]. 

The SCWR system has advantages in sustainability, economics, safety, and reliability. 
These systems may have a thermal or fast-neutron spectrum, depending on the core 
design. An SCWR system is shown in Figure 1 [3]. The main objectives of using 
supercritical fluids in nuclear reactors are: (a) to improve the performance and 
efficiency of nuclear power plants from 33%-35% to about 40%-45%; (b) to decrease 
the operational and capital costs (about $1000 US/kW). 

Many researchers have experimentally studied the heat transfer of supercritical fluids 
in circular tubes. Detailed reviews on heat transfer at supercritical pressures were 
provided by several authors [4-6]. However, representative experiments on large-scale 
models of the fuel elements can be performed only to a limited extent and at very great 
expense. The need for more accurate methods of predicting the behavior of coolant 
flow and heat transfer in SCWR has given rise to CFD methods. 
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Figure 1 Schematic of SCWR system [3]. 
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Two approaches are currently used in the numerical study of SCWR: (a) numerical 
simulations in a single subchannel of SCWR with the assumption of periodical 
boundary conditions and (b) the subchannel approach where the flow in each 
subchannel is assumed uniform and the turbulent mixing coefficient is used to account 
for the turbulent effect [7, 8]. The objective of this paper is to understand 
thermal-hydraulic behavior of supercritical fluids and to review the works that have 
been published in the numerical simulation of heat transfer of supercritical fluids 
under the SCWR conditions. 

2. Thermal-physical properties of supercritical fluids 

A supercritical fluid is a fluid of which the pressure and the temperature are higher 
than the values at the critical point. The position of the supercritical fluid can be 
shown in projection of phase diagram of water in Figure 2. The critical pressure of 
water is 22.1 MPa and the critical temperature is 374.12°C. However, in the present 
monograph, the term supercritical fluid includes: (a) the fluid of which both pressure 
and temperature are higher than the critical values; (b) the compressed fluid of which 
the pressure is higher than the critical value [9, 10]. The point at which the specific 
heat of the fluid has a peak value is known as the pseudo-critical point, which is above 
the critical point. 
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Figure 2 Phase diagram of water in the P-T plane. 

The most important characteristic of supercritical fluids is that their thermal-physical 
properties exhibit rapid variations with the change of temperature and pressure. The 
physical properties of water at a pressure of 25 MPa is shown in Figure 1.3 [11]. In 
general, all thermal-physical properties undergo significant changes near the 
pseudo-critical point. The density, the thermal conductivity, and the dynamic viscosity 
undergo a significant drop within a very narrow temperature range. 

This strong variation in thermal-physical properties has a great impact on the 
characteristics of fluid flow and heat transfer. Near the pseudo-critical line the water 
density decreases dramatically with the increase in temperature, which will result in a 
strong buoyancy force. For the turbulent water flow, there is a rapid change in the heat 
transfer coefficient when the temperature approaches to the pseudo-critical value. The 
closer the temperature is to the critical point, the higher is the heat transfer coefficient. 
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Figure 2   Phase diagram of water in the P-T plane. 
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Figure 3 Physical properties of water at a pressure of 25 MPa [11]. 

In the 1930s, researchers started to study the problem of heat transfer at supercritical 
pressures. The heat transfer coefficient of supercritical fluids is compared with the 
Dittus-Boelter equation which calculates the heat transfer coefficient for ordinary 
fluids. The Dittus-Boelter equation is known as [12] 

Nu = 0.023 Re" Pr" (1) 

where n=0.4 for heating and 0.3 for cooling. 

At low heat fluxes, the heat transfer coefficient for supercritical fluids is higher than 
the value predicted by the Dittus-Boelter equation, which is called heat transfer 
enhancement. At high heat fluxes, the heat transfer coefficient for supercritical fluids 
is lower than that computed by the Dittus-Boelter equation. Under some specific 
conditions, a sharp decrease in the heat transfer coefficient may occur in supercritical 
fluids. This phenomenon is called heat transfer deterioration. 

Correlations of the heat transfer coefficient for supercritical fluids can be obtained 
empirically based on experimental data. Most empirical correlations for the heat 
transfer of supercritical fluids have the general form of a modified Dittus-Boelter 
equation [13] 

Nu x = C • Rex. Pexn • F (2) 

The subscript X indicates the reference temperature which is used for calculating the 
properties. The coefficient C, and the exponents n and m are determined using 
experimental data. The correction factor F takes into account the effect of property 
variation and the entrance effect. 
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3. Numerical simulation of heat transfer of supercritical fluids 

3.1 CFD analysis in circular tubes 

Numerical simulations of heat transfer of supercritical fluids in circular tubes were 
carried out by many researchers using CFD methods. The most important and difficult 
things are related to turbulence modeling. 

In the earlier works, turbulence modeling was carried out by the simple eddy 
diffusivity approach [14, 15]. These studies only provided qualitative information of 
heat transfer mechanisms and did not give quantitative agreement with experimental 
data over a wide range of flow conditions. 

With the development of the computer technology in recent years, k-e turbulence 
models have been widely applied in numerical studies. Renz and Bellinghausen [16] 
solved the near-wall region by using the k-e model of Jones and Launder. They 
introduced an additional term to the turbulence model to account for the gravity 
influence. The results showed that heat transfer enhancement occurs at low heat fluxes 
and at the bulk temperature close to the pseudo-critical line. 

Koshizuka et al. [17] performed a 2-D numerical analysis for heat transfer of 
supercritical water in a 10 mm circular tube. An excellent agreement between their 
results and the test data was obtained. Based on numerical results, an empirical 
correlation of heat transfer coefficient was derived. 

Kim et al. [18] studied turbulence models for upward flows in circular tubes at 
supercritical pressures with 2-D calculations by FLUENT. They concluded that among 
the selected turbulence models, the RNG k-e model with enhanced wall treatment 
gives the best prediction results. It was also concluded that the wall function approach 
shows an acceptable prediction capability. 

He et al. [19] conducted simulations of heat transfer of CO2 at supercritical pressure 
using various low-Reynolds numbers turbulence models. 

Kitou et al. [20] used STAR-CD to simulate the heat transmission behavior in circular 
tubes and in single-rod channels for HCFC-22 with three-dimensional calculations. 
The two-layer k-e turbulence model was used. 

Seo et al. [21] used the standard k-e model with wall functions to predict heat transfer. 
However, the model was not able to predict heat transfer deterioration under 
conditions of high heat flux or low mass flux. 
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He et al. [22] numerically studied on the convection heat transfer to carbon dioxide. 
The low Reynolds number turbulence models are used and the results were comparied 
with the experimental data. The results showed that the effect of buoyancy on 
turbulence production and heat transfer in fluids at supercritical pressures can be very 
significant. 

Gallaway et al. [23] did 3-D simulations of fluid flow and heat transfer in SCWR 
channel (circular tube) using the NPHASE computer code. It showed that the local 
flow and heat transfer are very important in the evaluation of the heated wall 
temperature. The use of a proper approach to the modeling of local changes in the 
fluid properties across the turbulent boundary layer is the key factor affecting the 
accuracy of predictions of the peak heat transfer coefficient. 

3.2 CFD analysis in subchannels 

Some researchers have studied the heat transfer of subchannels for ordinary fluids. 
Baglietto and Ninokata [24, 25] numerically studied the heat transfer of liquid sodium 
flowing in a rectangular channel in which four heated rods were arranged. Cheng [26] 
performed a CFD analysis for thermal-hydraulic behavior of heavy liquid metal flows 
in subchannels of both triangular and square lattices. Chang and Tavoularis [27] 
studied turbulent flow and analyzed the effect of diminishing gap size on local flow 
and heat transfer of ordinary fluid in subchannels by using Reynolds stress model. 
They also numerically studied the flow in a 60° sector of a 37-rod bundle of a nuclear 
reactor [28]. 

The numerical analysis on heat transfer of supercritical fluids in subchannels is very 
limited. During the last few years, several researches [13, 29-31] have made efforts to 
assess the applicability of existing CFD methods to the simulation of heat transfer at 
the supercritical pressure conditions in subchannels. 

Cheng et al. [13, 29] investigated heat transfer of supercritical water in various flow 
channels using the software CFX. 3-D calculations for subchannels of triangular and 
square bundles were carried out. Strong circumferential non-uniformity of heat 
transfer and cladding surface temperature distributions in subchannels was found. The 
non-uniformity is more significant in a tighter lattice than in a wider lattice. However, 
the reason for this non-uniformity was not clarified. 

Yang et al. [30] numerically investigated the heat transfer in upward flows of 
supercritical water in circular tubes and tight fuel rod bundles using the commercial 
software STAR-CD. 3-D simulations were carried out in subchannels of tight square 
lattice and triangular lattice fuel bundles at supercritical pressures. Results showed that 
there is a strong non-uniformity of the circumferential distribution of the cladding 

Page 6 of 12 

 

He et al. [22] numerically studied on the convection heat transfer to carbon dioxide. 
The low Reynolds number turbulence models are used and the results were comparied 
with the experimental data. The results showed that the effect of buoyancy on 
turbulence production and heat transfer in fluids at supercritical pressures can be very 
significant.  

Gallaway et al. [23] did 3-D simulations of fluid flow and heat transfer in SCWR 
channel (circular tube) using the NPHASE computer code. It showed that the local 
flow and heat transfer are very important in the evaluation of the heated wall 
temperature. The use of a proper approach to the modeling of local changes in the 
fluid properties across the turbulent boundary layer is the key factor affecting the 
accuracy of predictions of the peak heat transfer coefficient.   

3.2  CFD analysis in subchannels 

Some researchers have studied the heat transfer of subchannels for ordinary fluids. 
Baglietto and Ninokata [24, 25] numerically studied the heat transfer of liquid sodium 
flowing in a rectangular channel in which four heated rods were arranged. Cheng [26] 
performed a CFD analysis for thermal-hydraulic behavior of heavy liquid metal flows 
in subchannels of both triangular and square lattices. Chang and Tavoularis [27] 
studied turbulent flow and analyzed the effect of diminishing gap size on local flow 
and heat transfer of ordinary fluid in subchannels by using Reynolds stress model. 
They also numerically studied the flow in a 60o sector of a 37-rod bundle of a nuclear 
reactor [28]. 

The numerical analysis on heat transfer of supercritical fluids in subchannels is very 
limited. During the last few years, several researches [13, 29-31] have made efforts to 
assess the applicability of existing CFD methods to the simulation of heat transfer at 
the supercritical pressure conditions in subchannels. 

Cheng et al. [13, 29] investigated heat transfer of supercritical water in various flow 
channels using the software CFX. 3-D calculations for subchannels of triangular and 
square bundles were carried out. Strong circumferential non-uniformity of heat 
transfer and cladding surface temperature distributions in subchannels was found. The 
non-uniformity is more significant in a tighter lattice than in a wider lattice. However, 
the reason for this non-uniformity was not clarified.  

Yang et al. [30] numerically investigated the heat transfer in upward flows of 
supercritical water in circular tubes and tight fuel rod bundles using the commercial 
software STAR-CD. 3-D simulations were carried out in subchannels of tight square 
lattice and triangular lattice fuel bundles at supercritical pressures. Results showed that 
there is a strong non-uniformity of the circumferential distribution of the cladding 

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 6 of 12



30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3 
33rd CNS/CNA Student Conference TELUS Convention Centre, Calgary, Alberta 

surface temperature in the square lattice bundle with a small pitch-to-diameter ratio 
(P/D); however, it does not occur in the triangular lattice bundle. 

Gu et al. [31] studied the thermal-hydraulic behavior of supercritical water flows in 
subchannels of a typical SCWR fuel assembly using the commercial software CFX. 
Three types of subchannels including regular subchannel, wall subchannel and corner 
subchannel were analyzed. Effects of various parameters, such as boundary conditions 
and pitch-to-diameter ratios, on the mixing phenomenon in subchannels and heat 
transfer were investigated. The amplitude of turbulent mixing in wall subchannel is 
slightly higher than that in regular sub-channel and is close to that in corner 
subchannel. The mass mixing due to cross flow in wall subchannel is much stronger 
than that in regular subchannel at the same P/D. 

3.3 Subchannel thermal-hydraulic analysis for SCWR 

Mukohara et al. [32] applied the subchannel approach in a high temperature fast 
reactor cooled by supercritical water (SCWR-H) to estimate the effect of local power 
peaking and cross flow. The results were compared with experimental data of High 
Conversion Pressurized Water Reactor (HCPWR). It was found that sensitivities of the 
outlet coolant and the cladding temperature to the subchannel flow area and the local 
power peaking are high. 

Chatoorgoon [33] examined supercritical flow stability in a single-channel, 
natural-convection loop using a non-linear numerical code. A theoretical stability 
criterion was also developed to verify the numerical prediction. Good agreement 
between the numerical and analytical results was obtained. 

Dimmick et al. [34] investigated the feasibility of natural-convection cooling for the 
SCWR designs by using the subchannel approach. 

Cheng et al. [35] summarized the main results related to a thermal-hydraulic design 
analysis of applicable fuel assemblies. The sub-channel analysis code Sub-channel 
Thermal-hydraulic Analysis in Fuel Assemblies under Supercritical conditions 
(STAFAS) was developed, which has a higher numerical efficiency compared to the 
conventional sub-channel analysis codes. The effect of several design parameters on 
the thermal-hydraulic behavior in sub-channels was investigated. Based on the results 
achieved so far, two fuel assembly configurations were recommended for further 
design analysis. 

Yu et al. [36] developed a sub-channel thermal-hydraulic analysis code named 
SUBCHAN to analyse CANDU-SCWR. Thermal-hydraulic model of SUBCHAN is 
based on four partial differential equations that describe the conservation of mass, 
energy and momentum vector in axial and lateral directions for the water liquid/vapor 
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mixture. By calculating the case and comparing with the results of ASSERT-PV code, 
they concluded that the SUBCHAN code with supercritical water property package 
can provide reasonable simulation results. 

Yoo et al. [37] carried out the subchannel analysis for Supercritical water Cooled Fast 
Reactor (SWFR) fuel assembly by using the subchannel approach. Since there was no 
available experiment data at supercritical pressures in bundle scale, the code has been 
verified with the results of ASFRE-III. 

Li [38] developed a sub-channel code (ATHAS) for fuel bundle analysis of 
supercritical water. The code was applicable for transient and steady state calculations. 
A total of 13 heat transfer correlations, 6 frictional resistance correlations, and 13 
turbulence mixing models were implemented into the code. In addition, an azimuthal 
conduction model was implemented to establish the fuel temperature. Preliminary 
analysis of the cladding surface temperature of 43-rod bundles and 37-rod bundles in a 
fuel channel was performed using this sub-channel code. 

4. Conclusion 

SCWR was proposed as a type of generation IV reactors in the 1990s. This SCWR 
concept requires researchers to demonstrate that the reactor and the fuel design limits 
can be met under the supercritical conditions. This has led researchers to investigate 
the fluid flow and heat transfer of supercritical fluids in fuel channels. The 
experimental study of supercritical fluids in the SCWR fuel channels is very costly 
and time-consuming. Therefore, the CFD method, which is less expensive and which 
can reduce the need for prototype testing, becomes a useful and attractive method for 
studying supercritical fluids in SCWR. This literature review is on numerical 
simulation of supercritical fluids in both subchannels and channels under the SCWR 
conditions. In general, although investigations on the thermal-hydraulic behavior in 
SCWR have obtained the attention of many researchers, there are still limits in the 
study of the fluid flow and the heat transfer of supercritical water in fuel channels. 

The literature review showed that although a large number of numerical studies on the 
heat transfer of supercritical fluids have been carried out, these studies are mainly on 
the heat transfer of supercritical fluids in circular tubes. Very few researchers devoted 
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The subchannel approach, which is widely used in the thermal-hydraulic design and 
analysis of nuclear fuel bundles, takes into account turbulent interactions between 
subchannels by using the turbulent mixing coefficient. In order to enhance the 
reliability, accuracy, and predictability of the subchannel approach, a reliable 
correlation of the turbulent mixing coefficient under supercritical conditions is needed. 
However, the current simulations are based on the turbulent mixing correlations for 
ordinary fluids, because the correlation of the turbulent mixing coefficient for 
supercritical fluids has not yet been developed. Therefore, numerical investigations 
using CFD methods are needed to provide a basic understanding of inter-subchannel 
turbulent mixing phenomena and to obtain the correlations of the turbulence mixing 
coefficient for supercritical fluids. The mixing coefficient correlations for supercritical 
fluids need to be further studied using the CFD method and embedded into subchannel 
analysis codes. 

In addition, the maximum local cladding surface temperature is an important value to 
ensure that nuclear reactors operate safely; yet, the subchannel approach for SCWR is 
not able to provide 3-D cladding surface temperature distributions. However, based on 
the literatures in subchannel studies, it can be seen that there is a strong 
non-uniformity of the circumferential distribution of the cladding surface temperature. 
Moreover, the geometry and the arrangement of the bundles have great influence on 
the cladding surface temperature and fluid flow. In the current subchannel approach, 
the cladding surface temperature in each subchannel is assumed to be uniform in the 
circumferential direction. This assumption results in inaccurate prediction of the 
maximum cladding surface temperature. Due to this deficiency of the subchannel 
approach, the full-scale 3-D CFD simulations on the heat transfer of supercritical 
fluids in fuel channels are highly required for the thermal-hydraulic design of SCWR. 
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