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Abstract 

Steam generators (SG) are a major pressure retaining component of great safety significance in 
nuclear power plants. Due to various manufacturing, operation and maintenance activities, as 
well as material interaction with the surrounding chemical environment, the SG tubes have been 
subject to a number of degradation modes. Among them, the under-deposit pitting corrosion at 
outside surfaces of the SG tubes just on top of the tubesheet support plates has had a serious 
impact on the integrity of the SG tubes. This paper presents an advanced probabilistic model of 
pitting corrosion characterizing the inherent randomness of the pitting process and measurement 
uncertainties of the in-service inspection (ISI) data obtained from eddy current (EC) inspections. 
A Bayesian method based on Markov Chain Monte Carlo (MCMC) simulation is developed for 
estimating the model parameters. The proposed model is able to predict the actual pit number, 
the actual pit depth as well as the maximum pit depth, which is the main interest of the pitting 
corrosion model. 

1. Introduction 

Steam generators in nuclear power plants have experienced varying degrees of under-deposit 
pitting corrosion. Pitting corrosion is a form of localized corrosion and typified by formation of 
cavities resulting from local metal dissolution within a passivated surface area (Galvele, 1983; 
Shibata, 1996; Strehblow, 2002). Once initiated, the pitting corrosion can lead to rapid 
penetration at small discrete areas and cause failure due to perforation, although the total 
corrosion, measured by weight loss, might be very negligible. 

Eddy current tests of the tubes have indicated that the pitting corrosion occurs on tubes near the 
tubesheet at levels corresponding to the levels of sludge that accumulates on the tubesheet 
(Tapping et al., 2000; Maruska, 2002). The sludge is mainly from oxides and copper compounds 
along with traces of other metals that have settled out of the feedwater onto the tubesheet. The 
correlation between sludge levels and the pit location strongly suggests that the sludge deposits 
provide a site for concentration of a phosphate solution or other corrosive agents at the tube wall 
that result in pitting corrosion (Jones, 1996). 

Therefore, an effective life-cycle management of steam generators, including both effective 
intervention methods and accurate prediction of pitting damages, is in great necessity for nuclear 
power plants to manage the pitting corrosion problems. One of the key issues in developing the 
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life-cycle management system is to accurately quantify risks associated with the pitting corrosion. 
For that purpose, an advanced probabilistic model shall be developed that takes into account the 
various uncertainties of the pitting corrosion from in-service inspection. The uncertainties 
include both the inherent randomness in the generation and growth of pits and inspection 
uncertainties. A localized damage, the pit is usually very difficult to be detected. Therefore, the 
probability of detection (POD) should be considered. Even if a pit is detected, the measurement 
of its size suffers from measurement errors. The measurement uncertainties become even worse 
for in-service inspections, due to the limited access, tight time budget and the existence of sludge 
deposit. 

The paper, following the idea of Celeux et al. (1999) developed for cracking flaws in pressure 
tubes, is aimed at developing a probabilistic model of pitting corrosion for life-cycle 
management of steam generators. The inherent randomness of pitting corrosion and POD and 
measurement errors of the in-service inspection tools are to be integrated in the proposed model. 
In the paper a statistical approach is developed to estimate the parameters of the proposed model. 
The approach deals with the pit generation and pit growth in a systematic way and its parameters 
are estimated using a Bayesian methodology. In particular, a Markov chain Monte Carlo 
simulation technique is developed to estimate the model parameters. The model is used to predict 
the number and size of pits for steam generators. It is also used to predict the distribution of 
maximum pit depth, which is one of the major decision-making parameters in life-cycle 
management program of steam generators. 

2. Probabilistic Pitting Corrosion Model 

A pit is usually treated as a one-dimensional damage, i.e., the pit depth. A pit model should 
specify the dynamics of pitting generation and pitting growth. With consideration of the 
availability of ISI data for model calibration, the following assumptions are made in the paper: 

(i) The actual sizes of pits HI, I/2 X , HN are independent random variables and they follow a 

Weibull distribution whose probability density function (PDF) is expressed as 

f (h)= y fi hfl -1 exp(—yhfl ) , h > 0 (1) 

in which y > 0 is the scale parameter and /3 > 0 is the shape parameter that controls the 
shape of the PDF. 

(ii) The actual pit numbers N for an inspection campaign is a random variable and follows a 
Poisson distributions with mean 2, i.e., 

A, n 
Pr(N= n) = — CA

n! 

for n = 0, 1, 2, .... 

(iii) The pit number Ni and pit size Hi are independent. 

(2) 
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This model involves three parameters: 2, y and fl. Given these parameters, the distribution of the 
maximum pit depth can be derived. Denote the maximum pit depth by Hmax. Based on the 
assumptions made above, its cumulative distribution function can be derived as 

F H = [Pr (Hi hn n Pr ( N = n) = expf —A, exp (—re )1 
n=0 

Equation (3.8) shows that the CDF of the maximum pit depth is a function of the three 
parameters 2, rand fl. 

hd 

POD 

hd

hm

hd
Measurement Error 

m

Actual Pits Measured Pits 

Figure 1: Measurement Uncertainties of ISI Data 

(3) 

But the problem is confounded by the measurement uncertainties of the ISI tools for steam 
generators. The measurement uncertainties consist of the uncertainty of detection and 
measurement errors of pit sizes when detected (Figure 1). Because of limited detection capability 
of the inspection tools, some pits especially those with small size may not be detected. For those 
having been detected, the actual readings of their depth from the tool suffer from measurement 
errors. 

The uncertainty of detection is often characterized probability of detection (POD), which is 
defined as a conditional probability depending on the pit depth 

POD(h) = P(D =1111 = h) (4) 

Note that the POD function is not a cumulative distribution function. Although for most modern 
ISI tools, POD(h) is 0 when h is 0 and it is 1 when h is big enough. 

A logistic function with threshold is assumed for the POD 
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[ 1  1+ exp(—qh*) 
, if h> s 

POD(h)=i 1+ exp [q(h — s — h*)] (5) 

LO, otherwise 

where s is the threshold of detection, introduced previously; h* can be considered as a location 
parameter indicating the starting point of "good" detection; and q is an index measuring the 
quality of detection. Bigger q implies better detectability. 

After the detection with uncertainty, the actual pits are divided into two groups: the detected pits, 

denoted by hd = ( hal , hd2, L , hd nd ), and the undetected pits, denoted by hd = (ho, k2, L , hun. ), 

where nd and nu denote the number of detected and undetected pits, respectively. The actual total 
number of pits is denoted by n and clearly n = nd+ nu. 

For the detected pits, the measured pit depth, denoted by hm =(hI, km2, L , knna ) , differs from 

their actual depth by an additive random measurement error e, i.e., 

hin =hd+e (6) 

where e = (el, e2, ... end). In this paper, the measurement errors are assumed to be independent 
and identically Gaussian distributed with zero mean and known variance. The PDF of the 
measurement errors is expressed as 

1 e2 

h(e) — 
a ENI r 

exp 
20-2E 

where 6 E2 is the variance. 

(7) 

To summarize the problem, from the ISI, we obtain the number and depth measurements of 
detected pits nd and h,n. Based on these data, we want to estimate the actual number of pits n and 
the actual pit depth h. The POD and measurement errors may be available as background 
information from the inspection tools. Our final goal is to use these estimations to predict the 
maximum pit depth while eliminating the effects of POD and measurement errors. 

3. Bayesian Statistical Methods for Estimating the Proposed Model 

3.1. Bayesian Approach 

Maximum likelihood method is considered to be a classic way to estimate the unknown model 
parameters based on the observed or measured data. In our case, the parameters include: the 
scale parameter y and shape parameter )6 of f H(h), the intensity parameter 2 of the Poisson 
distribution for the number of pits. It can be shown that the likelihood function of the three 
parameters based on the ISI data involves an infinite summation and several multi-dimensional 
integrations (Mao, 2007). In this case, Bayesian method is a good alternative to the maximum 
likelihood method. 
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22E
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ef e
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⎛ ⎞
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where 2
Eσ  is the variance. 
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the actual pit depth h. The POD and measurement errors may be available as background 
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3. Bayesian Statistical Methods for Estimating the Proposed Model 

3.1. Bayesian Approach 

Maximum likelihood method is considered to be a classic way to estimate the unknown model 
parameters based on the observed or measured data. In our case, the parameters include: the 
scale parameter γ and shape parameter β of fH(h), the intensity parameter λ of the Poisson 
distribution for the number of pits. It can be shown that the likelihood function of the three 
parameters based on the ISI data involves an infinite summation and several multi-dimensional 
integrations (Mao, 2007). In this case, Bayesian method is a good alternative to the maximum 
likelihood method.  
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For a Bayesian analysis, prior distributions for the parameters should be also specified. In this 
study, a Gamma distribution is used for the priors of y and X,, whereas a Beta distribution used 
for A Specifically, The prior distribution of y is a gamma distribution with two hyper-parameters 
A and B, denoted by y Ga(A,B), and its PDF is expressed as 

BA ,A-1 

ir(r)= 1 e y 
B (8) 

(A) 

Similarly, we assume 2 —Ga(a,b). The Beta prior for f3, however, has four hyper-parameters. 

Denoted by /6 Beta(R,T,L,U), its PDF is expressed as 

r(r+ t)  fi r — fl  
7c66)= 

r ( r ) r (t)( 6 r — )6 1) fir fir 

in which A and 137. are the lower and upper bounds of fl. It can be shown that the posterior 

distribution for y (or 2) given )6 (or 8) is again a Gamma distribution and thus the Gamma prior 
is conditionally conjugate, whereas the Beta prior for )6 is not conjugate. 

j-1 

(9) 

With the prior distributions specified, the full Bayesian pitting corrosion model is defined. As 
illustrated in Figure 2, this model includes five levels. On the bottom of the model are the 
observations that include the number of detected pit flaws and the measured pit depths at each 
inspection campaign. On the top are the hyper-parameters for the prior distributions. The 
observations and hyper-parameters, altogether with the knowledge of measurement errors (6E ) 
and the POD, are the known inputs (symbolized by squares in the figure) that are used to derive 
the posterior distribution of the parameters 4= (r,fl,2,) through Bayesian updating. Another 

level is added in the middle to represent the missing data, which includes the number of 
undetected pits (hence the total number of pits), measurement errors, and the actual depths of 
both detected and undetected pits. With the aid of this additional level of missing data, the 
process of Bayesian updating becomes easier, as explained next 

To avoid the difficulty of evaluating the likelihood function, a data augmentation technique is 
used. As shown in Figure 2, there are several missing intermediate data between the parameters 
and the observations. If the missing data were known, the likelihood of the parameters would be 
much more simplified. In fact, if the actual pit sizes (hd or hu) and the pit number (n) known, the 
likelihoods for )6 and rand for 2 are separable, the former being the product of the Weibull PDF 
as follow 

na na nu Lohd,h„),(yfirnu HicHkflji x exp -y Elej +Ekflj (10)1=1 1=1 1=1 1=1 
An 

and the latter a Poisson distribution function, L(il., In) = Tr ! e- • 
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!

n

L n e
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Figure 2: Bayesian pitting corrosion model 

3.2. Markov Chain Monte Carlo (MCMC) Simulation 

MCMC is a general simulation technique based on drawing samples iteratively from proposed 
distributions and then correcting those draws in each step of the process to better approximate 
the target posterior distribution when this target distribution cannot be directly sampled. Detailed 
discussions of the method are beyond the scope of the paper and they can be referred to, e.g., 
Gilks et al. (1996), Roberts (2001), and Gelman et al. (2004). The key of MCMC is to construct 
a Markov chain of which the stationary distribution is the target posterior distribution and to run 
the simulation long enough so that the distribution of the current draws is close enough to this 
stationary distribution. Two common algorithms of MCMC are Gibbs sampler and metropolis-
Hasting algorithm (Gilks et al., 1996). 

As mentioned in the previous subsection, the data augmentation technique can be used to 
simplify the likelihood function with the aid of missing data. Of course, we are not able to 
directly obtain the missing data. In the framework of MCMC simulation, the missing data can be 
simulated iteratively from the assumed probabilistic model using the simulated parameters. For 
example, once A, is obtained, we can generate a sample of n from the assumed Poisson 
distribution. After the actual pit number is obtained, the pit number is then used to update the 
parameter A, using the Bayesian rule and to generate the actual number of pit sizes. The detail of 
the iteration algorithm is described next. 

The algorithm consists of two iterated steps: a) computation of the conditional distribution of 
knowing 0 =(y,fl) and b) computation of the conditional distribution of 0 knowing A, . Assume 

that after j th iterations we have yi and fli. 

Step a 

1) Sample il,j+1 from Ga(a+nj ,b +1). 
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2) Calculate p f (B') from 

1
p1(0 ) = 1 0 POD(yf) (11) 

1000 

where ylj , yz ,L , )410. 00 are independent selections form the current pit depth distribution f (.  . 

3) Sample n,f:t from PoisRP1 (1— p f (0 j ))1, where Pois(a) denotes a Poisson distribution with 

mean a . 

4) Calculate the actual pit number e t = ;Pt + nd . 

Step b 

5) Simulated a number n;j:t of "undetected" flaw size huPt from the current flaw size distribution 

f (h 0J ) • Those simulations are performed as follows. Let PA be a random drawing from 

f(1110i ) • If 2/K s where s is the detection threshold, accept this value; otherwise accept it with 
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the simulation of fl j+1 from its conditional posterior distribution is expressed as 

PG6 
oc fin (13 /31 y-1 (fir fly-i[fal

r 1 )exp ri—yi(hri r (12) 

The Metropolis- Hasting algorithm is used to draw a sample of )6 from the above conditional 
posterior distribution. 
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The Metropolis- Hasting algorithm is used to draw a sample of β from the above conditional 
posterior distribution.  
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4. Case Study 

4.1. Overview of ISI Data 

A case study is presented to illustrate the proposed methodology. The pitting corrosion data were 
collected during an in-service inspection (ISI) outage of a steam generator using eddy current 
probes. 
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Figure 3: Histograms of pit depth for new pits 
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The histograms of the new measured pit depth are shown in Figure 3, in which the pit depth is 
expressed at percentages of through-wall depth (TWD). So the measured pit depth should be in 
the range of 0 to 100%. The pit depth data from the first four inspection campaigns are more 
spread than the remaining ones. In contrast, the measurements of pit depth at the 6th ISI locate 
almost exclusively at 30% TWD. Similarly, the data from the 7th and 8th campaigns concentrate 
at 20% TWD, although a relatively large number of new pits have been observed. 

In the Bayesian analysis, the prior mean of 2 has significant impact on the posterior distributions. 
In this case study the Jeffrey's non-informative prior distribution (Robert, 2001) is used for 2 . It 
turns out to be proportional to 2-112 , which is equivalent to the Gamma prior in equation (3.21) 
when a=1/2 and b =0 . 
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Figure 3: Histograms of pit depth for new pits 

The histograms of the new measured pit depth are shown in Figure 3, in which the pit depth is 
expressed at percentages of through-wall depth (TWD). So the measured pit depth should be in 
the range of 0 to 100%. The pit depth data from the first four inspection campaigns are more 
spread than the remaining ones. In contrast, the measurements of pit depth at the 6th ISI locate 
almost exclusively at 30% TWD. Similarly, the data from the 7th and 8th campaigns concentrate 
at 20% TWD, although a relatively large number of new pits have been observed. 

In the Bayesian analysis, the prior mean of λ has significant impact on the posterior distributions. 
In this case study the Jeffrey’s non-informative prior distribution (Robert, 2001) is used for λ . It 
turns out to be proportional to 1/ 2λ − , which is equivalent to the Gamma prior in equation (3.21) 
when 1/ 2a =  and 0b = .  
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For choosing the hyperparameters concerning the actual pit depth, we use guessed values of the 
mean value and variance of the actual pit depth. Here, based on the histogram shown in Figure 3, 
we assume the actual pit depth distribution with the mean 0.2 (20%) and variance 0.12 , which 
correspond to y = 20 and /6 = 2 for a Weibull model. Thus, we choose A = 20 , B =1 , 

[fli ,11,]= [0,5] , r = 2 and t= 3 . 

Based on the design and operational characteristics of the eddy current probes used, we use the 
POD function as Eq.(5) with q = 20, h* = 0.10 and s = 0.05. The standard deviation of the 
measurement error crE equals 0.05. 

4.2. Results 

In the MCMC simulation, 100,000 iterations are run. For the sake of clarity of presentation, we 
show the sample chains of the model parameters and the corresponding marginal posterior 
distributions for only the 9th ISI data in Figure 4. It is clear that the samples converge to their 
corresponding stationary distribution after 20,000 iterations. Therefore we discard the first 
20,000 samples as burn-ins and use the remaining to perform statistical analysis. 

Figure 5 compares the numbers of measured pits with the estimated actual pit numbers for each 
set of inspection data. The estimated actual pit numbers do not depends only on the measured pit 
numbers but also on the measured pit depth. For instance, the measured pit numbers at the 1st and 
3rd outages are 133 and 134 respectively. But the estimated actual pit numbers are 304 and 768. 
The former is much less than the latter even though their measured numbers are almost the same. 
Recall that the average of the measured pit depth at the 1st inspection is 36.7%, which is greater 
than the average of 24.2% at the 3rd inspection. This implies that the number of undetected pits 
(which are usually small in size) is less at the 1st inspection than at the 3rd inspection. 

For most cases, estimated pit numbers are reasonably greater than the measured pit numbers, 
except the 8th outage, for which the actual pit number is estimated as 7748, very far from the fact 
that only 238 new pits were observed. This result should be understood as artificial. As a matter 
of fact, the sample sequences do not converge for the 8th ISI data when M, is set less than 1. In 
order to make them convergent, J3L was arbitrarily set greater than 1, which means the Weibull 
distribution is forced to be of a bell shape. This may be against the reality, as the 8th ISI has the 
least average value among all the ISI data. 

Figure 6 shows the estimated maximum pit depth distribution with comparison of the estimated 
actual pit depth as well as the measured pit depth for the selected ISI data. For complete set of 
the comparisons, refer to Mao (2007). Comparing to the measured pit sizes, the distributions of 
actual pit sizes have smaller mean values, whereas the distributions of the maximum pit size 
shifts towards to greater mean values. It is also interesting that the first ISI data predict a 
significant probability that the maximum pit depth is greater than 100% TWD, i.e., the SG tubes 
would leak. In fact, after that ISI campaign, a broken SG tube was found indeed. After that event, 
preventive maintenance measures such as chemical cleaning and water lancing were taken and 
thereafter the probability of leak has been reduced significant. 

Page 9 of 12 

 

For choosing the hyperparameters concerning the actual pit depth, we use guessed values of the 
mean value and variance of the actual pit depth. Here, based on the histogram shown in Figure 3, 
we assume the actual pit depth distribution with the mean 0.2 (20%) and variance 20.1 , which 
correspond to 20γ =  and 2β =  for a Weibull model. Thus, we choose 20A = , 1B = , 
[ , ] [0,5]l rβ β = , 2r =  and 3t = . 

Based on the design and operational characteristics of the eddy current probes used, we use the 
POD function as Eq.(5) with q = 20, h* = 0.10 and s = 0.05. The standard deviation of the 
measurement error Eσ  equals 0.05.  

4.2. Results 

In the MCMC simulation, 100,000 iterations are run.  For the sake of clarity of presentation, we 
show the sample chains of the model parameters and the corresponding marginal posterior 
distributions for only the 9th ISI data in Figure 4. It is clear that the samples converge to their 
corresponding stationary distribution after 20,000 iterations. Therefore we discard the first 
20,000 samples as burn-ins and use the remaining to perform statistical analysis.  

Figure 5 compares the numbers of measured pits with the estimated actual pit numbers for each 
set of inspection data. The estimated actual pit numbers do not depends only on the measured pit 
numbers but also on the measured pit depth. For instance, the measured pit numbers at the 1st and 
3rd outages are 133 and 134 respectively. But the estimated actual pit numbers are 304 and 768. 
The former is much less than the latter even though their measured numbers are almost the same. 
Recall that the average of the measured pit depth at the 1st inspection is 36.7%, which is greater 
than the average of 24.2% at the 3rd inspection. This implies that the number of undetected pits 
(which are usually small in size) is less at the 1st inspection than at the 3rd inspection.  

For most cases, estimated pit numbers are reasonably greater than the measured pit numbers, 
except the 8th outage, for which the actual pit number is estimated as 7748, very far from the fact 
that only 238 new pits were observed. This result should be understood as artificial. As a matter 
of fact, the sample sequences do not converge for the 8th ISI data when βL is set less than 1. In 
order to make them convergent, βL was arbitrarily set greater than 1, which means the Weibull 
distribution is forced to be of a bell shape. This may be against the reality, as the 8th ISI has the 
least average value among all the ISI data. 

Figure 6 shows the estimated maximum pit depth distribution with comparison of the estimated 
actual pit depth as well as the measured pit depth for the selected ISI data. For complete set of 
the comparisons, refer to Mao (2007).  Comparing to the measured pit sizes, the distributions of 
actual pit sizes have smaller mean values, whereas the distributions of the maximum pit size 
shifts towards to greater mean values. It is also interesting that the first ISI data predict a 
significant probability that the maximum pit depth is greater than 100% TWD, i.e., the SG tubes 
would leak. In fact, after that ISI campaign, a broken SG tube was found indeed. After that event, 
preventive maintenance measures such as chemical cleaning and water lancing were taken and 
thereafter the probability of leak has been reduced significant. 

30th Annual Conference of the Canadian Nuclear Society
33rd CNS/CNA Student Conference

2009 May 31 - June 3
TELUS Convention Centre, Calgary, Alberta

Page 9 of 12



30th Annual Conference of the Canadian Nuclear Society 2009 May 31 - June 3 
33rd CNS/CNA Student Conference TELUS Convention Centre, Calgary, Alberta 

5. Conclusions 

Under-deposit pitting corrosion at outside surfaces of the steam generator tubes just on top of the 
tubesheet support plates has had a serious impact on the integrity of the SG tubes. This paper 
presents an advanced probabilistic model of pitting corrosion characterizing the inherent 
randomness of the pitting process and measurement uncertainties of the ISI data obtained from 
eddy current probes. A MCMC-based Bayesian statistical method is developed for estimating the 
model parameters. The MCMC technique is shown to be effective for Bayesian computation and 
inference. The proposed model is able to predict the actual pit number, the actual pit depth as 
well as the maximum pit depth, which is the main interest of the pitting corrosion model. 
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