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1. Introduction 

CANDU reactor is one of the three major commercial power reactor design used 
throughout the world. For the heat transport system (HTS) of a CANDU reactor, inside 
the reactor core is 2.5 wt% Nb alloy pressure tubes and connect carbon steel pipes outside 
the core. 

Corrosion of these pipes under reactor operating conditions is a main concern for 
aging CANDU reactors. Steel corrosion releases metal ions into the coolant, which can 
precipitate along the circuit, potentially affecting the heat transfer efficiency of the 
system. Their neutron activation prior to precipitation can increase radioactivity levels 
outside the reactor core, and pose a safety problem during reactor shutdown and 
maintenance. Various measures have been taken to minimize these effects, such as 
coolant purification and filtration and the adoption of pH control to minimize solubility. 
Concern about steel corrosion is not limited to CANDU, but also to PWR (pressurized 
water reactor) and BWR (boiling water reactors), although these reactors use stainless 
steel. 

The corrosion of steels is strongly affected by the presence of oxide films, which 
vary considerably in reactivity and solubility. Generally, corrosion studies have been 
limited to the low corrosion potential range where carbon steel in de-aerated water is 
typically poised. In this potential range, the surface oxide film is considered to be mainly 
magnetite, Fe3O4 [1], but more recent studies on the synergistic interaction of water 
radiolysis and carbon steel corrosion [2] suggest that 1120 2, produced by radiolysis, can 
increase the corrosion potential to a range where Fe(III) oxides, such as Fe2O3 and 
FeOOH, may also form in addition to Fe3O4. These surface oxides may interact with 
water radiolysis products very differently, making it difficult to predict the effect of 
radiation on steel corrosion, since 1120 2 may disproportionate on the oxide-covered 
surfaces (1120 2 = 202+1120), as well as drive steel corrosion. 

Our primary goal is to determine how radiolytic oxidants, such as 1120 2, will 
interact with oxide-covered steel surfaces and what influence this will have in steel 
corrosion kinetics. However, oxide films formed on carbon steel are complex mixtures of 
several different iron oxides and oxyhydroxides, making the corrosion chemistry of steel 
notoriously complex. For example, lepidocrocite, y-FeOOH, is a ubiquitous ferric 
oxyhydroxide that may enhance the rate of corrosion since it is suspected to act as an 
electron acceptor towards iron metal [3]. We have prepared single-phase oxide films on 
gold to facilitate electrochemical measurements on these oxides. By studying the 
behaviour of 1120 2 on individual oxides/hydroxides we hope to be able to characterize the 
more complicated behaviour of carbon steel surfaces in the presence of radiolytically-
decomposed water. 

1 of 8 

 

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY STUDY OF 
H2O2 INTERACTION WITH γ-FeOOH SINGLE-PHASE FILMS ON 

THE GOLD ELECTRODES 
 

Dong Fu 
 

Department of Chemistry, The University of Western Ontario, London, Ontario, Canada 
N6A 5B7 

 
1. Introduction 
 

CANDU reactor is one of the three major commercial power reactor design used 
throughout the world. For the heat transport system (HTS) of a CANDU reactor, inside 
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Concern about steel corrosion is not limited to CANDU, but also to PWR (pressurized 
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The corrosion of steels is strongly affected by the presence of oxide films, which 
vary considerably in reactivity and solubility. Generally, corrosion studies have been 
limited to the low corrosion potential range where carbon steel in de-aerated water is 
typically poised. In this potential range, the surface oxide film is considered to be mainly 
magnetite, Fe3O4 [1], but more recent studies on the synergistic interaction of water 
radiolysis and carbon steel corrosion [2] suggest that H2O2, produced by radiolysis, can 
increase the corrosion potential to a range where Fe(III) oxides, such as Fe2O3 and 
FeOOH, may also form in addition to Fe3O4. These surface oxides may interact with 
water radiolysis products very differently, making it difficult to predict the effect of 
radiation on steel corrosion, since H2O2 may disproportionate on the oxide-covered 
surfaces (H2O2 = 2O2+H2O), as well as drive steel corrosion. 

Our primary goal is to determine how radiolytic oxidants, such as H2O2, will 
interact with oxide-covered steel surfaces and what influence this will have in steel 
corrosion kinetics. However, oxide films formed on carbon steel are complex mixtures of 
several different iron oxides and oxyhydroxides, making the corrosion chemistry of steel 
notoriously complex. For example, lepidocrocite, γ-FeOOH, is a ubiquitous ferric 
oxyhydroxide that may enhance the rate of corrosion since it is suspected to act as an 
electron acceptor towards iron metal [3]. We have prepared single-phase oxide films on 
gold to facilitate electrochemical measurements on these oxides. By studying the 
behaviour of H2O2 on individual oxides/hydroxides we hope to be able to characterize the 
more complicated behaviour of carbon steel surfaces in the presence of radiolytically-
decomposed water. 
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In this paper, we prepared single-phase y-Fe0OH on the gold electrode and 
characterized with electrochemical impedance spectroscopy (PIS). The 11202 reaction 
with the oxide films was then followed by corrosion potential, Peon, and MS 
measurements as a function of exposure time to 1120 2, Ex situ Raman spectroscopy were 
used to characterize the oxides/hydroxides films. 

2. Experimental 

2.1. Electrochemical system 
A standard three-electrode cell, consisting of a gold working electrode, a reference 

electrode and a counter electrode, was used for all experiments. The working electrode 
was a 6-mm (in diameter) gold dise(goodfellows), set in resin so that only the flat front 
face was exposed to the solution. Prior to deposit film, this electrode was manually 
polished with 600 and 800 grit silicon carbide papers, and polishing residue removed by 
sonication in an acetone/methanol mixture fir 5 min The reference electrode was a 
saturated calomel electrode (SCE) and the counter electrode was platinum mesh. All 
potential measurements were made with, and are quoted against, a saturated calomel 
reference electrode (SCR). 

A Solartron model 1240 potenljostat and 1252 frequency response analyzer were 
used in all electrochemical measurements. Corrwarem and Corrview software (supplied 
by Scribner and Associates) was used to control experiments and analyze data. 
Electrochemical Impedance Spectroscopy (MS) was performed by applying a 10 mV 
sinusoidal potential waveform at an open circuit potential over the frequency range 
10 kHz to 10 2 HZ. 

2.2. y-Fe0OH film preparition 
The 1-FCCOH films were prepared following our previous work [4]. The gold 

electrodes were directly immersed 20 mmol/dm3 Fe(NO3)3 solution suspended vertically. 
The film deposition time in the oven was 24 h and the oven temperature ranged from 
60t. The electrodes were then removed from the solutions, rinsed with distilled water, 
and suspended in air to dry at ambient temperature for 24 h. 

23. Solutions 
Experiments were conducted at room temperature in Ar-purged 0.01 M borate 

(Na211407) with the pH adjusted to 10.6 with NaOH (unless otherwise stated). Solutions 
were prepared with water purified using a NANOpure Diamond UV ultrapure water 
system Eton Harnstead International to remove organic and inorganic impurities. 
Prepared in this manner, the water had a resistivity of 18.2 MO cm. 

A hydrogen peroxide stock solution was prepared by adding an appropriate amount 
of concentrated H202 (3% in the weight percentage) to the electrolyte solution to bring 
the 11202 concentnthon to a desired value in the range of 10-4 to 10 3 mol dm 3 (M). 

2.4. Experimental procedure 
The experimental procedure used to study the interaction of electrochemically 

grown oxide films with 11202 is presented schematically in Fig. 1, The Emit of the oxide 
covered gold electrode was allowed to relax for .60 min to a pseudo steady-stab value 
(Step 1), and the electrode/solution interface characterized by MS (Step 2). The reaction 
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used in all electrochemical measurements. CorrwareTM and Corrview software (supplied 
by Scribner and Associates) was used to control experiments and analyze data. 
Electrochemical Impedance Spectroscopy (EIS) was performed by applying a 10 mV 
sinusoidal potential waveform at an open circuit potential over the frequency range 
10 kHz to 10−2 Hz. 

 
2.2. γ-FeOOH film preparition 

The γ-FeOOH films were prepared following our previous work [4]. The gold 
electrodes were directly immersed 20 mmol/dm3 Fe(NO3)3 solution suspended vertically. 
The film deposition time in the oven was 24 h and the oven temperature ranged from 
60°C. The electrodes were then removed from the solutions, rinsed with distilled water, 
and suspended in air to dry at ambient temperature for 24 h. 

  
2.3. Solutions 

Experiments were conducted at room temperature in Ar-purged 0.01 M borate 
(Na2B4O7) with the pH adjusted to 10.6 with NaOH (unless otherwise stated). Solutions 
were prepared with water purified using a NANOpure Diamond UV ultrapure water 
system from Barnstead International to remove organic and inorganic impurities. 
Prepared in this manner, the water had a resistivity of 18.2 MΩ cm.  

A hydrogen peroxide stock solution was prepared by adding an appropriate amount 
of concentrated H2O2 (3% in the weight percentage) to the electrolyte solution to bring 
the H2O2 concentration to a desired value in the range of 10−4 to 10−3 mol dm−3 (M).  

 
2.4. Experimental procedure 

The experimental procedure used to study the interaction of electrochemically 
grown oxide films with H2O2 is presented schematically in Fig. 1. The ECORR of the oxide 
covered gold electrode was allowed to relax for 60 min to a pseudo steady-state value 
(Step 1), and the electrode/solution interface characterized by EIS (Step 2). The reaction 
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of the oxide films with H20 2 was initiated by adding H20 2 to the electrolyte solution, to 
bring the H202 concentration to desire. The progress of the reaction was monitored by 
measuring EcortR (Step 3), and recording EIS spectra at various reaction times (Step 4). 

E 

H202 added 

2 

EIS 
4 

ECORR EIS 

t 

Fig. 1. Schematic of the experimental procedure used in this study. 

2.5. Surface analysis 
The Raman spectrum of the samples was measured using a Renishaw Ramascope 

Model 2000 (633 nm laser wavelength, approx. 2mW at the sample at 100% power, scan 
from 2000-120 cm-1). 

3. Results and discussion 

3.1 Cyclic Voltammetry 
Two voltammograms recorded at pH10.6 and room temperature are shown in Fig. 

2. Scan from 0.2 V to —1.0 V and back to 0.2V. 
For the 7-Fe0OH films before exposed to H202, at cathodic scanning, current is 

very low in the range 0.2 — —0.5V. When potential passes the —0.5V, the current 
significantly increases, indicating reducing reactions occur. From equilibrium potentials 
and our prior to works [2, 5-7], the reducing reaction are 7-Fe0OH to Fe3O4 and then 
Fe3O4 to Fe(II) species. At anodic scanning, the current significantly increases due to H2 

absorbed at electrode surface during cathodic scanning is reduced. The peak at —0.6V is 
assigned Fe(II) species oxidized, for example Fe(OH)2 to Fe30 4. The peak at —0.4V is 
Fe3O4 oxidized to 7-Fe0OH. 
For the 7-Fe0OH after exposed H20 2 12h, the voltammogram is slight different with 
before exposed to H20 2 indicating the 7-Fe0OH film no significant changed. In the 
cathodic scanning, at —0.4V, an additional peak appears. Considering reducing reaction 
here, 7-Fe0OH to Fe3O4 is assigned [8]. Because crystaline sizes of FeOOH (partially) 
decrease due to interaction with H202, the reducing reaction 7-Fe0OH to Fe3O4 occurs 
early (partially). Detail discussion is in following sections. 
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3.2 Electrochemical impedance spectroscopy 
The EIS spectrum of 7-Fe0OH before expose to H202 can be fitted by one time 

constant (not shown). The resistance is —1.8 MCI and capacitance is —20 yr. The 
resistance and capacitance are not change with time in pH 10.6 borate solution. 
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Fig. 3. The electrical equivalent circuit used in EIS analyses and Schematic representation of the t-Fe0OH 
film after awned 1-401

Relaxing open circuit potential (OCP) of y-Fe0OH tams in pH 10.6 borate 
solution, the OCP reaches steady-state after lh. After adding H202 into the solution, the 
OCP immediately falls --0.3V and the impedance falls several orders comparing with the 
Om impedance before expose to H202, indicating the films break down and form more 
ports. 
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Fig. 2. Cyclic Votammetry of γ-FeOOH films on gold electrodes in pH 10.6 borate solutions. Scan rates 
5mV/s. Scan after exposed in H2O2 γ-FeOOH film in Ar-purged fresh pH10.6 borate solutions. 
 
3.2 Electrochemical impedance spectroscopy 

The EIS spectrum of γ-FeOOH before expose to H2O2 can be fitted by one time 
constant (not shown). The resistance is ~1.8 MΩ and capacitance is ~20 μF. The 
resistance and capacitance are not change with time in pH 10.6 borate solution.  
 

   
 
Fig. 3. The electrical equivalent circuit used in EIS analyses and Schematic representation of the γ-FeOOH 
film after exposed H2O2 
 

Relaxing open circuit potential (OCP) of γ-FeOOH films in pH 10.6 borate 
solution, the OCP reaches steady-state after 1h. After adding H2O2 into the solution, the 
OCP immediately falls ~0.3V and the impedance falls several orders comparing with the 
film impedance before expose to H2O2, indicating the films break down and form more 
pores. 
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Fig. 4. Film resistances and capacitances obtained by fitting to the electric equivalent circuit in fig. 2.: (a) 
upper figure, the outer layer; and (b) lower figure, the inner layer. 

EIS equivalent circuit as Fig. 3 shown has good fitting results for fitting y-Fe0OH 
films interaction with 1120 2. It is consistent with film structure changing, namely, more 
pores formed in the films as shown at CV and OCP results. 
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Fig. 4. Film resistances and capacitances obtained by fitting to the electric equivalent circuit in fig. 2.: (a) 
upper figure, the outer layer; and (b) lower figure, the inner layer. 
 
         EIS equivalent circuit as Fig. 3 shown has good fitting results for fitting γ-FeOOH 
films interaction with H2O2. It is consistent with film structure changing, namely, more 
pores formed in the films as shown at CV and OCP results.  
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In the equivalent circuit, Rs is bulk solution resistance. Q1 is capacitance of film 
outer layer. R1 is resistance of solution in the pores. R2 is resistance of film inner layer. 
Q2 is capacitance of film inner layer. 

Fitting results of R1 and Q1 are shown in Fig. 4a, R2 and Q2 shown in Fig. 4b with 
various 1120 2 concentration and reaction time. For the H20 2 concentration from 1 x10-4M 
rising to 1 x10-3M, the Q1 from —11µF increases to —21µF. 

From equation C = AE0E/L, where A is the geometrical surface area, Eo is the 
permissivity of free space. & is the oxide film dielectric constant. L is the passive layer 
thickness. Q1 decreases following 1120 2 concentration rising, indicating the outer layer 
thickness in higher concentration 1120 2 is thinner than that in the lower H202 
concentration. Similar trend can be found for Q2. Q2 decreases following H20 2
concentration rising, indicating the inner layer thickness in higher concentration H20 2 is 
thinner than that in the lower H20 2 concentration. 

R1 increases following H20 2 concentrations rising, indicating the pore volumes 
increasing with rising 1120 2 concentrations. 

R2 decreases along with H20 2 concentration, indicating inner layer is thinner in 
higher 11202 concentration, being consistent with Q2. 

At lower concentration H20 2, 1 x10-4M, Q1 decreases with reaction time, indicating 
outer layer thickness increasing due to redeposition Fe0OH on the surface [2]. 
Redeposition thickness is not too much because Q1 is just small change. Q2 is similar 
trend and increase significantly several orders indicating inner layer thickness increases 
much with reaction time. Redeposition effects is very significant in inner layer due to 
small pore volumes. In the small pore volume, soluble Fe(III) species cannot easily 
diffuse to the bulk solution. Therefore, when 1120 2 is exhausted in the pore, the Fe(III) 
species (partially) redeposit on the inner layer. 

R1 and R2 in 1 x 10-4M 1120 2 increase with time, indicating pore volumes reducing 
and inner layer thicker with time, due to redeposition, being consistent with Q2 
capacitance results. 

At H20 2 concentration 5x 104 M, H202 effect is similar as 1 x10-4 M. However, 
effect is enhanced due to higher H20 2 concentration. 

At H20 2 concentration 1 x10-3 M, R1, R2, Q1, Q2 just slightly change with reaction 
time. Because at higher H20 2 concentration, films form more pores and pore volumes are 
larger. Soluble Fe(III) species easily to diffuse into the bulk solution, therefore, redeposit 
effect is not significant. 

3.3. Raman spectra 
Fig. 5. shows Raman spectra of single-phase y-Fe0OH and after exposed to H20 2

1 x10-3M 12h. After exposed to H20 2 1 x10-iM 12h, all Raman peaks of the films are 
exactly match with single-phase y-Fe0OH peaks, suggesting the y-Fe0OH film 
composition does not change after interaction with H20 2. However, after exposed to 
H20 2, peak intensity slight reduces indicating film mircocrystalline change to smaller, 
which are consistent with analysis of CV and EIS. 
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and inner layer thicker with time, due to redeposition, being consistent with Q2 
capacitance results. 

At H2O2 concentration 5×10-4 M, H2O2 effect is similar as 1×10-4 M. However, 
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3.3. Raman spectra 

Fig. 5. shows Raman spectra of single-phase γ-FeOOH and after exposed to H2O2 
1×10-3M 12h. After exposed to H2O2 1×10-3M 12h, all Raman peaks of the films are 
exactly match with single-phase γ-FeOOH peaks, suggesting the γ-FeOOH film 
composition does not change after interaction with H2O2. However, after exposed to 
H2O2, peak intensity slight reduces indicating film mircocrystalline change to smaller, 
which are consistent with analysis of CV and EIS. 
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Fig. 5. Ex situ raman spectra of y-FeOOH films: the upper spectrum is for a film not exposed to 
H20 2 while the lower spectrum is for a film exposed to 1 x10-3M H202. 

4. Conclusion 

CV, EIS and Raman spectra confirm the y-Fe0OH films composition does not 
appear to alter before or after exposed to 1120 2. 1120 2 interacts with Fe0OH films 
resulting film break down and/or more pores formed. Furthermore, the y-Fe0OH films 
form two layers, porous outer layer and inner layer. The pores formed at lower 
concentration 1120 2 have small volume. Fe0OH redeposition occurs and makes pore 
volumes reduce, therefore, thickening inner layers and recover the films. Higher 11202 
concentration makes Fe0OH films to form larger volume pores and redeposition does not 
significantly appear. 
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